Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Photosynth Res ; 161(1-2): 1-3, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955922

RESUMO

All aerobic life on Earth depends on oxygenic photosynthesis, occurring in both prokaryotic and eukaryotic organisms. This process can be divided into light reactions and carbon fixation. This special issue is a result of the International Conference on "Photosynthesis and Hydrogen Energy Research for Sustainability 2023," held in honor of Robert Blankenship, Gyozo Garab, Michael Grätzel, Norman Hüner, and Gunnar Öquist. After extensive discussions on various aspects of photosynthesis and hydrogen energy, eight high-quality papers were selected. These papers cover studies on abiotic stress, an overview of photosynthesis, thylakoid membrane lipid organization, energy transfer, and the genomics of both prokaryotic and eukaryotic photosynthesis, as well as biohydrogen production from cyanobacteria. The authors used new methods and techniques, likely bringing fresh ideas for improving biomass and crop yield.


Assuntos
Hidrogênio , Fotossíntese , Hidrogênio/metabolismo , Cianobactérias/metabolismo , Cianobactérias/genética
2.
Photosynth Res ; 161(1-2): 141-150, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38502256

RESUMO

The 11th International Photosynthesis Conference on Hydrogen Energy Research and Sustainability 2023 was organized in honor of Robert Blankenship, Gyozo Garab, Michael Grätzel, Norman Hüner, and Gunnar Öquist, in Istanbul, Türkiye at Bahçesehir University Future Campus from 03 to 09 July 2023. It was jointly supported by the International Society of Photosynthesis Research (ISPR) and the International Association for Hydrogen Energy (IAHE). In this article we provide brief details of the conference, its events, keynote speakers, and the scientific contribution of scientists honored at this conference. Further, we also describe the participation of young researchers, their talks, and their awards.


Assuntos
Hidrogênio , Fotossíntese , Hidrogênio/metabolismo , Distinções e Prêmios , História do Século XXI , Pesquisa
3.
Photosynth Res ; 157(2-3): 55-63, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37199910

RESUMO

Photosystem I (PSI) catalyzes light-induced electron-transfer reactions and has been observed to exhibit various oligomeric states and different energy levels of chlorophylls (Chls) in response to oligomerization. However, the biochemical and spectroscopic properties of a PSI monomer containing Chls d are not well understood. In this study, we successfully isolated and characterized PSI monomers from the cyanobacterium Acaryochloris marina MBIC11017, and compared their properties with those of the A. marina PSI trimer. The PSI trimers and monomers were prepared using trehalose density gradient centrifugation after anion-exchange and hydrophobic interaction chromatography. The polypeptide composition of the PSI monomer was found to be consistent with that of the PSI trimer. The absorption spectrum of the PSI monomer showed the Qy band of Chl d at 704 nm, which was blue-shifted from the peak at 707 nm observed in the PSI-trimer spectrum. The fluorescence-emission spectrum of the PSI monomer measured at 77 K exhibited a peak at 730 nm without a broad shoulder in the range of 745-780 nm, which was clearly observed in the PSI-trimer spectrum. These spectroscopic properties of the A. marina PSI trimer and monomer suggest different formations of low-energy Chls d between the two types of PSI cores. Based on these findings, we discuss the location of low-energy Chls d in A. marina PSIs.


Assuntos
Cianobactérias , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/metabolismo , Clorofila/química , Cianobactérias/metabolismo , Espectrometria de Fluorescência
4.
Photosynth Res ; 146(1-3): 5-15, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31758403

RESUMO

The 10th International Conference on «Photosynthesis and Hydrogen Energy Research for Sustainability-2019¼ was held in honor of Tingyun Kuang (China), Anthony Larkum (Australia), Cesare Marchetti (Italy), and Kimiyuki Satoh (Japan), in St. Petersburg (Russia) during June 23-28, 2019. The official conference organizers from the Russian side were from the Institute of Basic Biological Problems of the Russian Academy of Sciences (IBBP RAS), Russian Society for Photobiology (RSP), and the Komarov Botanical Institute of the Russian Academy of Sciences ([K]BIN RAS). This conference was organized with the help of Monomax Company, a member of the International Congress Convention Association (ICCA), and was supported by the Ministry of Education and Science of the Russian Federation. Here, we provide a brief description of the conference, its scientific program, as well as a brief introduction and key contributions of the four honored scientists. Further, we emphasize the recognition given, at this conference, to several outstanding young researchers, from around the World, for their research in the area of our conference. A special feature of this paper is the inclusion of photographs provided by one of us (Tatsuya Tomo). Lastly, we urge the readers to watch for information on the next 11th conference on "Photosynthesis and Hydrogen Energy Research for Sustainability-2021," to be held in Bulgaria in 2021.


Assuntos
Conservação dos Recursos Naturais , Fotossíntese , Energia Renovável , Pesquisa , Hidrogênio/análise , Oxigênio/metabolismo
5.
Langmuir ; 36(23): 6429-6435, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32396731

RESUMO

Photosynthesis is one of the most vital processes in nature, which consists of two main photoreaction centers called photosystem I and photosystem II. The high quantum yield of photosystem I (PSI) makes it attractive for bioelectronic applications. However, the native PSI (N-PSI) loses its robust photochemical properties once fabricated into devices. This property degradation results from the difficulty in controlling the orientation of PSI. With the optimal orientation of PSI, photoexcited electrons can easily reach the electrode, yielding good photoelectric conversion efficiency. We developed a novel photoelectrode by integrating a newly designed gene-recombined PSI (G-PSI) with platinum nanoparticles (PtNPs) on substrates using a simple stacking method, which can control the orientation of PSI on the electrode. The target orientation of the attached G-PSI toward the substrate was confirmed by the absorption spectra of polarized light. An approximately 2-fold increase in the internal quantum yield (IQY) was observed for the G-PSI-attached electrode under 680 nm irradiation compared with that of the N-PSI-modified electrode. In addition, a 4-fold enhancement of the IQY was detected for cytochrome c (Cyt c) stacking on the G-PSI because of the electrostatic interaction, suggesting that Cyt c successfully secured the electron-transfer pathway.


Assuntos
Nanopartículas Metálicas , Complexo de Proteína do Fotossistema I , Fotossíntese , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Platina
6.
Photosynth Res ; 139(1-3): 185-201, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30039357

RESUMO

The phototrophic cyanobacterium Halomicronema hongdechloris shows far-red light-induced accumulation of chlorophyll (Chl) f, but the involvement of the pigment in photosynthetic energy harvesting by photosystem (PS) II is controversially discussed. While H. hongdechloris contains negligible amounts of Chl f in white-light culture conditions, the ratio of Chl f to Chl a is reversibly changed up to 1:8 under illumination with far-red light (720-730 nm). We performed UV-Vis absorption spectroscopy, time-integrated and time-resolved fluorescence spectroscopy for the calculation of decay-associated spectra (DAS) to determine excitation energy transfer (EET) processes between photosynthetic pigments in intact H. hongdechloris filaments. In cells grown under white light, highly efficient EET occurs from phycobilisomes (PBSs) to Chl a with an apparent time constant of about 100 ps. Charge separation occurs with a typical apparent time constant of 200-300 ps from Chl a. After 3-4 days of growth under far-red light, robust Chl f content was observed in H. hongdechloris and EET from PBSs reached Chl f efficiently within 200 ps. It is proposed based on mathematical modeling by rate equation systems for EET between the PBSs and PSII and subsequent electron transfer (ET) that charge separation occurs from Chl a and excitation energy is funneled from Chl f to Chl a via an energetically uphill EET driven by entropy, which is effective because the number of Chl a molecules coupled to Chl f is at least eight- to tenfold larger than the corresponding number of Chl f molecules. The long lifetime of Chl f molecules in contact to a tenfold larger pool of Chl a molecules allows Chl f to act as an intermediate energy storage level, from which the Gibbs free energy difference between Chl f and Chl a can be overcome by taking advantage from the favorable ratio of degeneracy coefficients, which formally represents a significant entropy gain in the Eyring formulation of the Arrhenius law. Direct evidence for energetically uphill EET and charge separation in PSII upon excitation of Chl f via anti-Stokes fluorescence in far-red light-adapted H. hongdechloris cells was obtained: Excitation by 720 nm laser light resulted in robust Chl a fluorescence at 680 nm that was distinctly temperature-dependent and, notably, increased upon DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) treatment in far-red light-adapted cells. Thus, rather than serving as an excitation energy trap, Chl f in far-red light-adapted H. hongdechloris cells is directly contributing to oxygenic photosynthesis at PSII.


Assuntos
Clorofila/análogos & derivados , Luz , Fotossíntese/fisiologia , Clorofila/metabolismo , Entropia , Fotossíntese/genética , Complexo de Proteína do Fotossistema II/metabolismo
7.
Biochim Biophys Acta Bioenerg ; 1858(9): 779-785, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28587930

RESUMO

Psb31, a novel extrinsic protein found in diatom photosystem II (PSII), directly binds to PSII core subunits, independent of the other extrinsic proteins, and functions to maintain optimum oxygen evolution. However, how Psb31 electrostatically interacts with PSII intrinsic proteins remains to be clarified. In this study, we examined electrostatic interaction of Psb31 with PSII complexes isolated from the diatom Chaetoceros gracilis. Positive or negative charges of isolated Psb31 proteins were modified with N-succinimidyl propionate (NSP) or glycine methyl ester (GME), respectively, resulting in formation of uncharged groups. NSP-modified Psb31 did not bind to PSII with a concomitant increase in NSP concentration, whereas GME-modified Psb31 clearly bound to PSII with retention of oxygen-evolving activity, indicating that positive charges of Lys residues and the N-terminus on the surface of Psb31 are involved in electrostatic interactions with PSII intrinsic proteins. Mass spectrometry analysis of NSP-modified Psb31 and sequence comparisons of Psb31 from C. gracilis with other chromophyte algae led to identification of three Lys residues as possible binding sites to PSII. Based on these findings, together with our previous cross-linking study in diatom PSII and a red algal PSII structure, we discuss binding properties of Psb31 with PSII core proteins.


Assuntos
Diatomáceas/metabolismo , Proteínas de Membrana/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Sequência de Aminoácidos , Diatomáceas/efeitos da radiação , Glicina/análogos & derivados , Glicina/farmacologia , Focalização Isoelétrica , Modelos Moleculares , Oxigênio/metabolismo , Propionatos/farmacologia , Conformação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Eletricidade Estática
8.
Photosynth Res ; 133(1-3): 1-3, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28396976

RESUMO

Energy supply, climate change, and global food security are among the main chalenges facing humanity in the twenty-first century. Despite global energy demand is continuing to increase, the availability of low cost energy is decreasing. Together with the urgent problem of climate change due to CO2 release from the combustion of fossil fuels, there is a strong requirement of developing the clean and renewable energy system for the hydrogen production. Solar fuel, biofuel, and hydrogen energy production gained unlimited possibility and feasibility due to understanding of the detailed photosynthetic system structures. This special issue contains selected papers on photosynthetic and biomimetic hydrogen production presented at the International Conference "Photosynthesis Research for Sustainability-2016", that was held in Pushchino (Russia), during June 19-25, 2016, with the sponsorship of the International Society of Photosynthesis Research (ISPR) and of the International Association for Hydrogen Energy (IAHE). This issue is intended to provide recent information on the photosynthetic and biohydrogen production to our readers.


Assuntos
Conservação dos Recursos Naturais , Hidrogênio/análise , Fotossíntese , Pesquisa , Congressos como Assunto , Oxigênio/metabolismo
9.
Photosynth Res ; 131(2): 227-236, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27726059

RESUMO

During June 19-26, 2016, an international conference ( http://photosynthesis2016.cellreg.org/ ) on "Photosynthesis Research for Sustainability-2016" was held in honor of Nathan Nelson and Turhan Nejat Veziroglu at the Institute of Basic Biological Problems, Russian Academy of Sciences, formerly Institute of Photosynthesis, Academy of Sciences of the USSR, Pushchino, Russia. Further, this conference celebrated the 50th anniversary of the Institute. We provide here a brief introduction and key contributions of the two honored scientists, and then information on the conference, on the speakers, and the program. A special feature of this conference was the awards given to several young investigators, who are recognized in this Report. Several photographs are included to show the excellent ambience at this conference. We invite the readers to the next conference on "Photosynthesis and Hydrogen Energy Research for Sustainability-2017", which will honor A.S. Raghavendra (of University of Hyderabad), William Cramer (of Purdue University) and Govindjee (of University of Illinois at Urbana-Champaign); it will be held during the Fall of 2017 (from October 30 to November 4), at the University of Hyderabad, Hyderabad, India. See < https://prs.science >.


Assuntos
Fotossíntese , Pesquisa
10.
Photosynth Res ; 133(1-3): 155-162, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27864658

RESUMO

Photosystem I (PS I) is a large pigment-protein complex embedded in the thylakoid membranes that performs light-driven electron transfer across the thylakoid membrane. Carbon nanotubes exhibit excellent electrical conductivities and excellent strength and stiffness. In this study, we generated PSI-carbon nanotube conjugates dispersed in a solution aimed at application in artificial photosynthesis. PS I complexes in which a carbon nanotube binding peptide was introduced into the middle of the PsaE subunit were conjugated on a single-walled carbon nanotube, orienting the electron acceptor side to the nanotube. Spectral and photoluminescence analysis showed that the PS I is bound to a single-walled carbon nanotube, which was confirmed by transmission electron microscopy. Photocurrent observation proved that the photoexcited electron originated from PSI and transferred to the carbon nanotube with light irradiation, which also confirmed its orientated conjugation. The PS I-carbon nanotube conjugate will be a useful nano-optoelectronic device for the development of artificial systems.


Assuntos
Luz , Nanotubos de Carbono/química , Fotoquímica/instrumentação , Complexo de Proteína do Fotossistema I/metabolismo , Centrifugação , Transporte de Elétrons , Eletroforese em Gel de Poliacrilamida , Nanotubos de Carbono/ultraestrutura , Synechocystis/metabolismo
11.
Langmuir ; 33(6): 1351-1358, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28103045

RESUMO

Photosystem II (PSII)-modified gold electrodes were prepared by the deposition of PSII reconstituted with platinum nanoparticles (PtNPs) on Au electrodes. PtNPs modified with 1-[15-(3,5,6-trimethyl-1,4-benzoquinone-2-yl)]pentadecyl disulfide ((TMQ(CH2)15S)2) were incorporated into the QB site of PSII isolated from thermophilic cyanobacterium Thermosynechococcus elongatus. The reconstitution was confirmed by QA-reoxidation measurements. PSII reconstituted with PtNPs was deposited and integrated on a Au(111) surface modified with 4,4'-biphenyldithiol. The cross section of the reconstituted PSII film on the Au electrode was investigated by SEM. Absorption spectra showed that the surface coverage of the electrode was about 18 pmol PSII cm-2. A photocurrent density of 15 nAcm-2 at E = +0.10 V (vs Ag/AgCl) was observed under 680 nm irradiation. The photoresponse showed good reversibility under alternating light and dark conditions. Clear photoresponses were not observed in the absence of PSII and molecular wire. These results supported the photocurrent originated from PSII and moved to a gold electrode by light irradiation, which also confirmed conjugation with orientation through the molecular wire.

12.
Biochim Biophys Acta ; 1847(10): 1274-82, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26188377

RESUMO

Energy transfer dynamics in dimeric photosystem II (PSII) complexes isolated from four diatoms, Chaetoceros gracilis, Cyclotella meneghiniana, Thalassiosira pseudonana, and Phaeodactylum tricornutum, are examined. Time-resolved fluorescence measurements were conducted in the range of 0-80ns. Delayed fluorescence spectra showed a clear difference between PSII monomer and PSII dimer isolated from the four diatoms. The difference can be interpreted as reflecting suppressed energy transfer between PSII monomers in the PSII dimer for efficient energy trapping at the reaction center. The observation was especially prominent in C. gracilis and T. pseudonana. The pathways seem to be suppressed under a low pH condition in isolated PSII complexes from C. gracilis, and excitation energy may be quenched with fucoxanthin chlorophyll a/c-binding protein (FCP) that was closely associated with PSII in C. gracilis. The energy transfer between PSII monomers in the PSII dimer may play a role in excitation energy regulation in diatoms.

13.
Biochim Biophys Acta ; 1847(2): 294-306, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25461976

RESUMO

"Back to Nature" is a promising way to solve the problems that we face today, such as air pollution and shortage of energy supply based on conventional fossil fuels. A Mn cluster inside photosystem II catalyzes light-induced water-splitting leading to the generation of protons, electrons and oxygen in photosynthetic organisms, and has been considered as a good model for the synthesis of new artificial water-oxidizing catalysts. Herein, we surveyed the structural and functional details of this cluster and its surrounding environment. Then, we review the mechanistic findings concerning the cluster and compare this biological catalyst with nano-sized Mn oxides, which are among the best artificial Mn-based water-oxidizing catalysts.


Assuntos
Compostos de Manganês/química , Óxidos/química , Complexo de Proteína do Fotossistema II/química , Água/química , Catálise , Nanoestruturas , Oxirredução
14.
Plant Cell Physiol ; 57(7): 1510-1517, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26712847

RESUMO

Although the photosynthetic reaction center is well conserved among different cyanobacterial species, the modes of metabolism, e.g. respiratory, nitrogen and carbon metabolism and their mutual interaction, are quite diverse. To explore such uniformity and diversity among cyanobacteria, here we compare the influence of the light environment on the condition of photosynthetic electron transport through Chl fluorescence measurement of six cyanobacterial species grown under the same photon flux densities and at the same temperature. In the dark or under weak light, up to growth light, a large difference in the plastoquinone (PQ) redox condition was observed among different cyanobacterial species. The observed difference indicates that the degree of interaction between respiratory electron transfer and photosynthetic electron transfer differs among different cyanobacterial species. The variation could not be ascribed to the phylogenetic differences but possibly to the light environment of the original habitat. On the other hand, changes in the redox condition of PQ were essentially identical among different species at photon flux densities higher than the growth light. We further analyzed the response to high light by using a typical energy allocation model and found that 'non-regulated' thermal dissipation was increased under high-light conditions in all cyanobacterial species tested. We assume that such 'non-regulated' thermal dissipation may be an important 'regulatory' mechanism in the acclimation of cyanobacterial cells to high-light conditions.


Assuntos
Cianobactérias/metabolismo , Processos Fotoquímicos , Clorofila/metabolismo , Fluorescência , Cinética , Oxirredução , Fotossíntese , Especificidade da Espécie , Análise Espectral
15.
Photosynth Res ; 130(1-3): 83-91, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26846772

RESUMO

The rapid turnover of photosystem II (PSII) in diatoms is thought to be at an exceptionally high rate compared with other oxyphototrophs; however, its molecular mechanisms are largely unknown. In this study, we examined the photodamage and repair processes of PSII in the marine centric diatom Chaetoceros gracilis incubated at 30 or 300 µmol photons m-2 s-1 in the presence of a de novo protein-synthesis inhibitor. When de novo protein synthesis was blocked by chloramphenicol (Cm), oxygen-evolving activity gradually decreased even at 30 µmol photons m-2 s-1 and could not be detected at 12 h. PSII inactivation was enhanced by higher illumination. Using Cm-treated cells, the conversion of PSII dimer to monomers was observed by blue native PAGE. The rate of PSII monomerization was very similar to that of the decrease in oxygen-evolving activity under both light conditions. Immunological detection of D1 protein in the Cm-treated cells showed that the rate of D1 degradation was slower than that of the former two events, although it was more rapid than that observed in other oxyphototrophs. Thus, the three accelerated events, especially PSII monomerization, appear to cause the unusually high rate of PSII turnover in diatoms.


Assuntos
Diatomáceas/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Cloranfenicol/farmacologia , Diatomáceas/efeitos dos fármacos , Diatomáceas/efeitos da radiação , Eletroforese em Gel de Poliacrilamida , Luz , Oxigênio/metabolismo , Fótons , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/efeitos da radiação
16.
Photosynth Res ; 130(1-3): 1-10, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26650229

RESUMO

During September 21-26, 2015, an international conference entitled ''Photosynthesis Research for Sustainability-2015'' was held in honor of George C. Papageorgiou at the Conference Center of the Orthodox Academy of Crete, an exceptionally beautiful location right on the Mediterranean Sea coast, Kolymvari, Chania, Crete, (Greece) (see http://photosynthesis2015.cellreg.org/ ). The meeting was held under the auspices of the Greek "General Secretariat for Research and Technology" (GSRT). We first provide a brief introduction and key contributions of George C. Papageorgiou, the honored scientist, and then information on the conference, on the speakers, and the program. A special feature of this conference was awards given to 13 young investigators, who are recognized in this Report. Several photographs are also included; they show the pleasant ambience at this conference. We invite the readers to the next conference on "Photosynthesis Research for Sustainability-2016," which will honor Nathan Nelson and T. Nejat Veziroglu; it will be held during June 19-25, 2016, in Pushchino, Moscow Region, Russia (see http://photosynthesis2016.cellreg.org/ ).


Assuntos
Fotossíntese , Conservação dos Recursos Naturais , História do Século XX , História do Século XXI , Pesquisa/história
17.
Photosynth Res ; 130(1-3): 225-235, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27037826

RESUMO

Herein we report on the synthesis and characterization of nano-sized Mn oxide/silica aerogel with low density as a good catalyst toward water oxidation. The composite was synthesized by a simple and low-cost hydrothermal procedure. In the next step, we studied the composite in the presence of cerium(IV) ammonium nitrate and photo-produced Ru(bpy) 33+ as a water-oxidizing catalyst. The low-density composite is a good Mn-based catalyst with turnover frequencies of ~0.3 and 0.5 (mmol O2/(mol Mn·s)) in the presence of Ru(bpy) 33+ and cerium(IV) ammonium nitrate, respectively. In addition to the water-oxidizing activities of the composite under different conditions, its self-healing reaction in the presence of cerium(IV) ammonium nitrate was also studied.


Assuntos
Compostos de Manganês/metabolismo , Oxirredução , Óxidos/metabolismo , Água/metabolismo , Catálise , Compostos de Manganês/química , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Óxidos/química , Sílica Gel/química
18.
Biochemistry ; 54(11): 2022-31, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25744893

RESUMO

Extrinsic proteins of photosystem II (PSII) play an important role in optimizing oxygen-evolving reactions in all oxyphototrophs. The currently available crystal structures of cyanobacterial PSII core complexes show the binding structures of the extrinsic proteins, PsbO, PsbV, and PsbU; however, how the individual extrinsic proteins affect the structure and the function of the oxygen-evolving center (OEC) in cyanobacterial PSII remains unknown. In this study, we have investigated the effects of the binding of the extrinsic proteins on the protein conformation of the OEC in PSII core complexes from the thermophilic cyanobacterium Thermosynechococcus elongatus, using light-induced Fourier transform infrared (FTIR) difference spectroscopy. Upon removal of the three extrinsic proteins, an S2-minus-S1 FTIR difference spectrum measured in the presence of a high CaCl2 concentration showed a drastic change in amide I bands, reflecting perturbation of the secondary structures of polypeptides, whereas the overall spectral intensity was lost at a low CaCl2 concentration, indicative of inactivation of the Mn4CaO5 cluster. The amide I features as well as the overall intensity were recovered mainly by binding of PsbO, while complete amide I recovery was achieved by further binding of PsbV and PsbU. We thus concluded that PsbO, together with smaller contributions of PsbV and PsbU, plays a role in the maintenance of the proper protein conformation of the OEC in cyanobacterial PSII, which provides the stability of the Mn4CaO5 cluster via the enhanced retention capability of Ca²âº and Cl⁻ ions.


Assuntos
Proteínas de Bactérias/química , Cianobactérias/enzimologia , Modelos Moleculares , Complexo de Proteína do Fotossistema II/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Cloreto de Cálcio/química , Estabilidade Enzimática , Concentração Osmolar , Complexo de Proteína do Fotossistema II/isolamento & purificação , Complexo de Proteína do Fotossistema II/metabolismo , Conformação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Biochim Biophys Acta ; 1837(9): 1514-21, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24530875

RESUMO

In algae, light-harvesting complexes contain specific chlorophylls (Chls) and keto-carotenoids; Chl a, Chl c, and fucoxanthin (Fx) in diatoms and brown algae; Chl a, Chl c, and peridinin in photosynthetic dinoflagellates; and Chl a, Chl b, and siphonaxanthin in green algae. The Fx-Chl a/c-protein (FCP) complex from the diatom Chaetoceros gracilis contains Chl c1, Chl c2, and the keto-carotenoid, Fx, as antenna pigments, in addition to Chl a. In the present study, we investigated energy transfer in the FCP complex associated with photosystem II (FCPII) of C. gracilis. For these investigations, we analyzed time-resolved fluorescence spectra, fluorescence rise and decay curves, and time-resolved fluorescence anisotropy data. Chl a exhibited different energy forms with fluorescence peaks ranging from 677 nm to 688 nm. Fx transferred excitation energy to lower-energy Chl a with a time constant of 300fs. Chl c transferred excitation energy to Chl a with time constants of 500-600fs (intra-complex transfer), 600-700fs (intra-complex transfer), and 4-6ps (inter-complex transfer). The latter process made a greater contribution to total Chl c-to-Chl a transfer in intact cells of C. gracilis than in the isolated FCPII complexes. The lower-energy Chl a received excitation energy from Fx and transferred the energy to higher-energy Chl a. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.


Assuntos
Proteínas de Ligação à Clorofila/química , Transferência de Energia , Polarização de Fluorescência , Complexo de Proteína do Fotossistema II/química , Espectrometria de Fluorescência
20.
Biochim Biophys Acta ; 1837(9): 1484-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24792349

RESUMO

We examined energy transfer dynamics in the unique chlorophyll (Chl) f-containing cyanobacterium Halomicronema hongdechloris. The absorption band of Chl f appeared during cultivation of this organism under far-red light. The absorption maximum of Chl f in organic solvents occurs at a wavelength of approximately 40 nm longer than that of Chl a. In vivo, the cells display a new absorption band at approximately 730 nm at 298 K, which is at a significantly longer wavelength than that of Chl a. We primarily assigned this band to a long wavelength form of Chl a. The function of Chl f is currently unknown. We measured the fluorescence of cells using time-resolved fluorescence spectroscopy in the picosecond-to-nanosecond time range and found clear differences in fluorescence properties between the cells that contained Chl f and the cells that did not. After excitation, the fluorescence peaks of photosystem I and photosystem II appeared quickly but diminished immediately. A unique fluorescence peak located at 748 nm subsequently appeared in cells containing Chl f. This finding strongly suggests that the Chl f in this alga exists in photosystem I and II complexes and is located close to each molecule of Chl a. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.


Assuntos
Clorofila/análogos & derivados , Cianobactérias/metabolismo , Espectrometria de Fluorescência/métodos , Clorofila/química , Transferência de Energia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA