Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 71(14): 2577-604, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24363178

RESUMO

Pyruvate is a keystone molecule critical for numerous aspects of eukaryotic and human metabolism. Pyruvate is the end-product of glycolysis, is derived from additional sources in the cellular cytoplasm, and is ultimately destined for transport into mitochondria as a master fuel input undergirding citric acid cycle carbon flux. In mitochondria, pyruvate drives ATP production by oxidative phosphorylation and multiple biosynthetic pathways intersecting the citric acid cycle. Mitochondrial pyruvate metabolism is regulated by many enzymes, including the recently discovered mitochondria pyruvate carrier, pyruvate dehydrogenase, and pyruvate carboxylase, to modulate overall pyruvate carbon flux. Mutations in any of the genes encoding for proteins regulating pyruvate metabolism may lead to disease. Numerous cases have been described. Aberrant pyruvate metabolism plays an especially prominent role in cancer, heart failure, and neurodegeneration. Because most major diseases involve aberrant metabolism, understanding and exploiting pyruvate carbon flux may yield novel treatments that enhance human health.


Assuntos
Erros Inatos do Metabolismo dos Piruvatos/metabolismo , Ácido Pirúvico/metabolismo , Ciclo do Ácido Cítrico , Citosol/metabolismo , Cardiopatias/metabolismo , Humanos , Mitocôndrias/metabolismo , Modelos Biológicos , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Ácido Pirúvico/química
2.
Cell Rep ; 28(10): 2608-2619.e6, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484072

RESUMO

Hepatocellular carcinoma (HCC) is a devastating cancer increasingly caused by non-alcoholic fatty liver disease (NAFLD). Disrupting the liver Mitochondrial Pyruvate Carrier (MPC) in mice attenuates NAFLD. Thus, we considered whether liver MPC disruption also prevents HCC. Here, we use the N-nitrosodiethylamine plus carbon tetrachloride model of HCC development to test how liver-specific MPC knock out affects hepatocellular tumorigenesis. Our data show that liver MPC ablation markedly decreases tumorigenesis and that MPC-deficient tumors transcriptomically downregulate glutathione metabolism. We observe that MPC disruption and glutathione depletion in cultured hepatomas are synthetically lethal. Stable isotope tracing shows that hepatocyte MPC disruption reroutes glutamine from glutathione synthesis into the tricarboxylic acid (TCA) cycle. These results support a model where inducing metabolic competition for glutamine by MPC disruption impairs hepatocellular tumorigenesis by limiting glutathione synthesis. These findings raise the possibility that combining MPC disruption and glutathione stress may be therapeutically useful in HCC and additional cancers.


Assuntos
Carcinogênese/metabolismo , Carcinoma Hepatocelular/metabolismo , Ciclo do Ácido Cítrico , Glutamina/metabolismo , Glutationa/biossíntese , Neoplasias Hepáticas/metabolismo , Mitocôndrias/metabolismo , Ácido Pirúvico/metabolismo , Animais , Apoptose , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/genética , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/metabolismo , Especificidade de Órgãos , Transcriptoma/genética
3.
Elife ; 82019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31305240

RESUMO

Metabolic cycles are a fundamental element of cellular and organismal function. Among the most critical in higher organisms is the Cori Cycle, the systemic cycling between lactate and glucose. Here, skeletal muscle-specific Mitochondrial Pyruvate Carrier (MPC) deletion in mice diverted pyruvate into circulating lactate. This switch disinhibited muscle fatty acid oxidation and drove Cori Cycling that contributed to increased energy expenditure. Loss of muscle MPC activity led to strikingly decreased adiposity with complete muscle mass and strength retention. Notably, despite decreasing muscle glucose oxidation, muscle MPC disruption increased muscle glucose uptake and whole-body insulin sensitivity. Furthermore, chronic and acute muscle MPC deletion accelerated fat mass loss on a normal diet after high fat diet-induced obesity. Our results illuminate the role of the skeletal muscle MPC as a whole-body carbon flux control point. They highlight the potential utility of modulating muscle pyruvate utilization to ameliorate obesity and type 2 diabetes.


Assuntos
Glucose/metabolismo , Redes e Vias Metabólicas , Mitocôndrias Musculares/metabolismo , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Ácido Pirúvico/metabolismo , Magreza , Adiposidade , Animais , Proteínas de Transporte de Ânions/deficiência , Deleção de Genes , Lactatos/metabolismo , Camundongos , Camundongos Knockout , Proteínas de Transporte da Membrana Mitocondrial/deficiência , Transportadores de Ácidos Monocarboxílicos/deficiência , Força Muscular
4.
Cell Metab ; 22(4): 669-81, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26344103

RESUMO

Gluconeogenesis is critical for maintenance of euglycemia during fasting. Elevated gluconeogenesis during type 2 diabetes (T2D) contributes to chronic hyperglycemia. Pyruvate is a major gluconeogenic substrate and requires import into the mitochondrial matrix for channeling into gluconeogenesis. Here, we demonstrate that the mitochondrial pyruvate carrier (MPC) comprising the Mpc1 and Mpc2 proteins is required for efficient regulation of hepatic gluconeogenesis. Liver-specific deletion of Mpc1 abolished hepatic MPC activity and markedly decreased pyruvate-driven gluconeogenesis and TCA cycle flux. Loss of MPC activity induced adaptive utilization of glutamine and increased urea cycle activity. Diet-induced obesity increased hepatic MPC expression and activity. Constitutive Mpc1 deletion attenuated the development of hyperglycemia induced by a high-fat diet. Acute, virally mediated Mpc1 deletion after diet-induced obesity decreased hyperglycemia and improved glucose tolerance. We conclude that the MPC is required for efficient regulation of gluconeogenesis and that the MPC contributes to the elevated gluconeogenesis and hyperglycemia in T2D.


Assuntos
Glucose/metabolismo , Mitocôndrias Hepáticas/enzimologia , Pró-Proteína Convertase 1/metabolismo , Acrilatos/farmacologia , Animais , Células Cultivadas , Ciclo do Ácido Cítrico/efeitos dos fármacos , Dieta Hiperlipídica , Gluconeogênese/efeitos dos fármacos , Glutamina/metabolismo , Glicogênio/análise , Hepatócitos/citologia , Hepatócitos/metabolismo , Hiperglicemia/metabolismo , Hiperglicemia/prevenção & controle , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/etiologia , Obesidade/metabolismo , Pró-Proteína Convertase 1/deficiência , Pró-Proteína Convertase 1/genética , Pró-Proteína Convertase 2/antagonistas & inibidores , Pró-Proteína Convertase 2/genética , Pró-Proteína Convertase 2/metabolismo , Ácido Pirúvico/metabolismo , Triglicerídeos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA