Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 286(38): 33053-60, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21832039

RESUMO

Bacillus anthracis is a severe mammalian pathogen encoding a class Ib ribonucleotide reductase (RNR). RNR is a universal enzyme that provides the four essential deoxyribonucleotides needed for DNA replication and repair. Almost all Bacillus spp. encode both class Ib and class III RNR operons, but the B. anthracis class III operon was reported to encode a pseudogene, and conceivably class Ib RNR is necessary for spore germination and proliferation of B. anthracis upon infection. The class Ib RNR operon in B. anthracis encodes genes for the catalytic NrdE protein, the tyrosyl radical metalloprotein NrdF, and the flavodoxin protein NrdI. The tyrosyl radical in NrdF is stabilized by an adjacent Mn(2)(III) site (Mn-NrdF) formed by the action of the NrdI protein or by a Fe(2)(III) site (Fe-NrdF) formed spontaneously from Fe(2+) and O(2). In this study, we show that the properties of B. anthracis Mn-NrdF and Fe-NrdF are in general similar for interaction with NrdE and NrdI. Intriguingly, the enzyme activity of Mn-NrdF was approximately an order of magnitude higher than that of Fe-NrdF in the presence of the class Ib-specific physiological reductant NrdH, strongly suggesting that the Mn-NrdF form is important in the life cycle of B. anthracis. Whether the Fe-NrdF form only exists in vitro or whether the NrdF protein in B. anthracis is a true cambialistic enzyme that can work with either manganese or iron remains to be established.


Assuntos
Bacillus anthracis/enzimologia , Proteínas de Bactérias/metabolismo , Manganês/metabolismo , Ribonucleotídeo Redutases/metabolismo , Apoproteínas/metabolismo , Flavodoxina/metabolismo , Holoenzimas/metabolismo , Ferro/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Espectrofotometria Ultravioleta , Ressonância de Plasmônio de Superfície
2.
Biochem J ; 434(3): 391-8, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21166655

RESUMO

The Fe(II)/2OG (2-oxoglutarate)-dependent dioxygenase superfamily comprises proteins that couple substrate oxidation to decarboxylation of 2OG to succinate. A member of this class of mononuclear non-haem Fe proteins is the Escherichia coli DNA/RNA repair enzyme AlkB. In the present work, we describe the magnetic and optical properties of the yet uncharacterized human ALKBH4 (AlkB homologue). Through EPR and UV-visible spectroscopy studies, we address the Fe-binding environment of the proposed catalytic centre of wild-type ALKBH4 and an Fe(II)-binding mutant. We could observe a novel unusual Fe(III) high-spin EPR-active species in the presence of sulfide with a g(max) of 8.2. The Fe(II) site was probed with NO. An intact histidine-carboxylate site is necessary for productive Fe binding. We also report the presence of a unique cysteine-rich motif conserved in the N-terminus of ALKBH4 orthologues, and investigate its possible Fe-binding ability. Furthermore, we show that recombinant ALKBH4 mediates decarboxylation of 2OG in absence of primary substrate. This activity is dependent on Fe as well as on residues predicted to be involved in Fe(II) co-ordination. The present results demonstrate that ALKBH4 represents an active Fe(II)/2OG-dependent decarboxylase and suggest that the cysteine cluster is involved in processes other than Fe co-ordination.


Assuntos
Carboxiliases/química , Dioxigenases/química , Ferro/metabolismo , Ácidos Cetoglutáricos/metabolismo , Homólogo AlkB 4 da Lisina Desmetilase , Motivos de Aminoácidos , Carboxiliases/genética , Domínio Catalítico , Dioxigenases/genética , Dioxigenases/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Mutação , Espectrofotometria Ultravioleta
3.
Biochemistry ; 47(43): 11300-9, 2008 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-18831534

RESUMO

The rate limiting step in DNA biosynthesis is the reduction of ribonucleotides to form the corresponding deoxyribonucleotides. This reaction is catalyzed by ribonucleotide reductases (RNRs) and is an attractive target against rapidly proliferating pathogens. Class I RNRs are binuclear non-heme iron enzymes and can be further divided into subclasses. Class Ia is found in many organisms, including humans, while class Ib has only been found in bacteria, notably some pathogens. Both Bacillus anthracis and Bacillus cereus encode class Ib RNRs with over 98% sequence identity. The geometric and electronic structure of the B. cereus diiron containing subunit (R2F) has been characterized by a combination of circular dichroism, magnetic circular dichroism (MCD) and variable temperature variable field MCD and is compared to class Ia RNRs. While crystallography has given several possible descriptions for the class Ib RNR biferrous site, the spectroscopically defined active site contains a 4-coordinate and a 5-coordinate Fe(II), weakly antiferromagnetically coupled via mu-1,3-carboxylate bridges. Class Ia biferrous sites are also antiferromagnetically coupled 4-coordinate and 5-coordinate Fe(II), however quantitatively differ from class Ib in bridging carboxylate conformation and tyrosine radical positioning relative to the diiron site. Additionally, the iron binding affinity in B. cereus RNR R2F is greater than class Ia RNR and provides the pathogen with a competitive advantage relative to host in physiological, iron-limited environments. These structural differences have potential for the development of selective drugs.


Assuntos
Bacillus cereus/enzimologia , Dicroísmo Circular , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/classificação , Bacillus cereus/química , Bacillus cereus/genética , Sítios de Ligação , Temperatura Baixa , Modelos Químicos , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo
4.
ACS Chem Biol ; 9(2): 526-37, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24295378

RESUMO

Class Ib ribonucleotide reductases (RNRs) use a dimetal-tyrosyl radical (Y•) cofactor in their NrdF (ß2) subunit to initiate ribonucleotide reduction in the NrdE (α2) subunit. Contrary to the diferric tyrosyl radical (Fe(III)2-Y•) cofactor, which can self-assemble from Fe(II)2-NrdF and O2, generation of the Mn(III)2-Y• cofactor requires the reduced form of a flavoprotein, NrdIhq, and O2 for its assembly. Here we report the 1.8 Å resolution crystal structure of Bacillus cereus Fe2-NrdF in complex with NrdI. Compared to the previously solved Escherichia coli NrdI-Mn(II)2-NrdF structure, NrdI and NrdF binds similarly in Bacillus cereus through conserved core interactions. This protein-protein association seems to be unaffected by metal ion type bound in the NrdF subunit. The Bacillus cereus Mn(II)2-NrdF and Fe2-NrdF structures, also presented here, show conformational flexibility of residues surrounding the NrdF metal ion site. The movement of one of the metal-coordinating carboxylates is linked to the metal type present at the dimetal site and not associated with NrdI-NrdF binding. This carboxylate conformation seems to be vital for the water network connecting the NrdF dimetal site and the flavin in NrdI. From these observations, we suggest that metal-dependent variations in carboxylate coordination geometries are important for active Y• cofactor generation in class Ib RNRs. Additionally, we show that binding of NrdI to NrdF would structurally interfere with the suggested α2ß2 (NrdE-NrdF) holoenzyme formation, suggesting the potential requirement for NrdI dissociation before NrdE-NrdF assembly after NrdI-activation. The mode of interactions between the proteins involved in the class Ib RNR system is, however, not fully resolved.


Assuntos
Bacillus cereus/química , Bacillus cereus/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Flavoproteínas/metabolismo , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/metabolismo , Cristalografia por Raios X , Flavoproteínas/química , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica
5.
PLoS One ; 7(3): e33436, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22432022

RESUMO

Ribonucleotide reductase (RNR) catalyzes the rate limiting step in DNA synthesis where ribonucleotides are reduced to the corresponding deoxyribonucleotides. Class Ib RNRs consist of two homodimeric subunits: R1E, which houses the active site; and R2F, which contains a metallo cofactor and a tyrosyl radical that initiates the ribonucleotide reduction reaction. We studied the R2F subunit of B. cereus reconstituted with iron or alternatively with manganese ions, then subsequently reacted with molecular oxygen to generate two tyrosyl-radicals. The two similar X-band EPR spectra did not change significantly over 4 to 50 K. From the 285 GHz EPR spectrum of the iron form, a g(1)-value of 2.0090 for the tyrosyl radical was extracted. This g(1)-value is similar to that observed in class Ia E. coli R2 and class Ib R2Fs with iron-oxygen cluster, suggesting the absence of hydrogen bond to the phenoxyl group. This was confirmed by resonance Raman spectroscopy, where the stretching vibration associated to the radical (C-O, ν(7a) = 1500 cm(-1)) was found to be insensitive to deuterium-oxide exchange. Additionally, the (18)O-sensitive Fe-O-Fe symmetric stretching (483 cm(-1)) of the metallo-cofactor was also insensitive to deuterium-oxide exchange indicating no hydrogen bonding to the di-iron-oxygen cluster, and thus, different from mouse R2 with a hydrogen bonded cluster. The HF-EPR spectrum of the manganese reconstituted RNR R2F gave a g(1)-value of ∼2.0094. The tyrosyl radical microwave power saturation behavior of the iron-oxygen cluster form was as observed in class Ia R2, with diamagnetic di-ferric cluster ground state, while the properties of the manganese reconstituted form indicated a magnetic ground state of the manganese-cluster. The recent activity measurements (Crona et al., (2011) J Biol Chem 286: 33053-33060) indicates that both the manganese and iron reconstituted RNR R2F could be functional. The manganese form might be very important, as it has 8 times higher activity.


Assuntos
Bacillus cereus/enzimologia , Radicais Livres/metabolismo , Ferro/metabolismo , Manganês/metabolismo , Ribonucleotídeo Redutases/metabolismo , Tirosina/metabolismo , Animais , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Camundongos , Micro-Ondas , Ribonucleotídeo Redutases/química , Espectrofotometria Ultravioleta , Análise Espectral Raman , Temperatura , Tirosina/química
6.
PLoS One ; 7(8): e42784, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22916159

RESUMO

The enzyme ribonucleotide reductase (RNR) catalyzes the conversion of ribonucleotides to deoxyribonucleotides, the precursors for DNA. RNR requires a thiyl radical to activate the substrate. In RNR of eukaryotes (class Ia RNR), this radical originates from a tyrosyl radical formed in reaction with oxygen (O(2)) and a ferrous di-iron center in RNR. The crucian carp (Carassius carassius) is one of very few vertebrates that can tolerate several months completely without oxygen (anoxia), a trait that enables this fish to survive under the ice in small ponds that become anoxic during the winter. Previous studies have found indications of cell division in this fish after 7 days of anoxia. This appears nearly impossible, as DNA synthesis requires the production of new deoxyribonucleotides and therefore active RNR. We have here characterized RNR in crucian carp, to search for adaptations to anoxia. We report the full-length sequences of two paralogs of each of the RNR subunits (R1i, R1ii, R2i, R2ii, p53R2i and p53R2ii), obtained by cloning and sequencing. The mRNA levels of these subunits were measured with quantitative PCR and were generally well maintained in hypoxia and anoxia in heart and brain. We also report maintained or increased mRNA levels of the cell division markers proliferating cell nuclear antigen (PCNA), brain derived neurotrophic factor (BDNF) and Ki67 in anoxic hearts and brains. Electron paramagnetic resonance (EPR) measurements on in vitro expressed crucian carp R2 and p53R2 proteins gave spectra similar to mammalian RNRs, including previously unpublished human and mouse p53R2 EPR spectra. However, the radicals in crucian carp RNR small subunits, especially in the p53R2ii subunit, were very stable at 0°C. A long half-life of the tyrosyl radical during wintertime anoxia could allow for continued cell division in crucian carp.


Assuntos
Carpas/fisiologia , Hipóxia/fisiopatologia , Oxigênio/metabolismo , Ribonucleotídeo Redutases/metabolismo , Animais , Sequência de Bases , Carpas/classificação , Clonagem Molecular , Primers do DNA , Espectroscopia de Ressonância de Spin Eletrônica , Feminino , Masculino , Filogenia , Reação em Cadeia da Polimerase , RNA Mensageiro/genética
7.
PLoS One ; 6(9): e25022, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21980375

RESUMO

Epstein-Barr virus (EBV) belongs to the gamma subfamily of herpes viruses, among the most common pathogenic viruses in humans worldwide. The viral ribonucleotide reductase small subunit (RNR R2) is involved in the biosynthesis of nucleotides, the DNA precursors necessary for viral replication, and is an important drug target for EBV. RNR R2 generates a stable tyrosyl radical required for enzymatic turnover. Here, the electronic and magnetic properties of the tyrosyl radical in EBV R2 have been determined by X-band and high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy recorded at cryogenic temperatures. The radical exhibits an unusually low g1-tensor component at 2.0080, indicative of a positive charge in the vicinity of the radical. Consistent with these EPR results a relatively high C-O stretching frequency associated with the phenoxyl radical (at 1508 cm⁻¹) is observed with resonance Raman spectroscopy. In contrast to mouse R2, EBV R2 does not show a deuterium shift in the resonance Raman spectra. Thus, the presence of a water molecule as a hydrogen bond donor moiety could not be identified unequivocally. Theoretical simulations showed that a water molecule placed at a distance of 2.6 Å from the tyrosyl-oxygen does not result in a detectable deuterium shift in the calculated Raman spectra. UV/VIS light spectroscopic studies with metal chelators and tyrosyl radical scavengers are consistent with a more accessible dimetal binding/radical site and a lower affinity for Fe²âº in EBV R2 than in Escherichia coli R2. Comparison with previous studies of RNR R2s from mouse, bacteria, and herpes viruses, demonstrates that finely tuned electronic properties of the radical exist within the same RNR R2 Ia class.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Radicais Livres/metabolismo , Herpesvirus Humano 4/metabolismo , Análise Espectral Raman/métodos , Tirosina/metabolismo , Ribonucleotídeo Redutases , Espectrofotometria Ultravioleta
8.
Biochemistry ; 45(47): 14043-51, 2006 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-17115699

RESUMO

Ribonucleotide reductases (RNR) catalyze the rate-limiting step in the synthesis of deoxyribonucleotides from the corresponding ribonucleotides in the synthesis of DNA. Class I RNR has two subunits: R1 with the substrate binding and active site and R2 with a stable tyrosyl radical and diiron cluster. Biferrous R2 reacts with oxygen to form the tyrosyl radical needed for enzymatic activity. A novel R2 form, p53R2, is a 351-amino acid protein induced by the "tumor suppressor gene" p53. p53R2 has been studied using a combination of circular dichroism, magnetic circular dichroism, variable-temperature variable-field MCD, and EPR spectroscopies. The active site of biferrous p53R2 in both the human (hp53R2) and mouse (mp53R2) forms is found to have one five-coordinate and one four-coordinate iron, which are weakly antiferromagnetically coupled through mu-1,3-carboxylate bridges. These spectroscopic data are very similar to those of Escherichia coli R2, and mouse R2, with a stronger resemblance to data of the former. Titrations of apo-hp53R2 and apo-mp53R2 with Fe(II) were pursued for the purpose of comparing their metal binding affinities to those of other R2s. Both p53R2s were found to have a high affinity for Fe(II), which is different from that of mouse R2 and may reflect differences in the regulation of enzymatic activity, as p53R2 is mainly triggered during DNA repair. The difference in ferrous affinity between mammalian R2 and p53R2 suggests the possibility of specific inhibition of DNA precursor synthesis during cell division.


Assuntos
Compostos Ferrosos/metabolismo , Ribonucleotídeo Redutases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Sítios de Ligação , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Camundongos , Ribonucleotídeo Redutases/química , Proteína Supressora de Tumor p53/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA