Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430829

RESUMO

The localization of lipoprotein (Lol) system is responsible for the transport of lipoproteins in the outer membrane (OM) of Vibrio parahaemolyticus. LolB catalyzes the last step in the Lol system, where lipoproteins are inserted into the OM. If the function of LolB is impeded, growth of V. parahaemolyticus is inhibited, due to lack of an intact OM barrier for protection against the external environment. Additionally, it becomes progressively harder to generate antimicrobial resistance (AMR). In this study, LolB was employed as the receptor for a high-throughput virtual screening from a natural compounds database. Compounds with higher glide score were selected for an inhibition assay against V. parahaemolyticus. It was found that procyanidin, stevioside, troxerutin and rutin had both exciting binding affinity with LolB in the micromolar range and preferable antibacterial activity in a concentration-dependent manner. The inhibition rates of 100 ppm were 87.89%, 86.2%, 91.39% and 83.71%, respectively. The bacteriostatic mechanisms of the four active compounds were explored further via fluorescence spectroscopy and molecular docking, illustrating that each molecule formed a stable complex with LolB via hydrogen bonds and pi-pi stacking interactions. Additionally, the critical sites for interaction with V. parahaemolyticus LolB, Tyr108 and Gln68, were also illustrated. This paper demonstrates the inhibition of LolB, thus, leading to antibacterial activity, and identifies LolB as a promising drug target for the first time. These compounds could be the basis for potential antibacterial agents against V. parahaemolyticus.


Assuntos
Proteínas de Escherichia coli , Proteínas Periplásmicas de Ligação , Vibrio parahaemolyticus , Proteínas de Escherichia coli/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Vibrio parahaemolyticus/metabolismo , Escherichia coli/metabolismo , Simulação de Acoplamento Molecular , Chaperonas Moleculares/metabolismo , Lipoproteínas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo
2.
Compr Rev Food Sci Food Saf ; 20(4): 3319-3343, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33938116

RESUMO

Worldwide, foods waste caused by putrefactive organisms and diseases caused by foodborne pathogens persist as public health problems even with a plethora of modern antimicrobials. Our over reliance on antimicrobials use in agriculture, medicine, and other fields will lead to a postantibiotic era where bacterial genotypic resistance, phenotypic adaptation, and other bacterial evolutionary strategies cause antimicrobial resistance (AMR). This AMR is evidenced by the emergence of multiple drug-resistant (MDR) bacteria and pan-resistant (PDR) bacteria, which produces cross-contamination in multiple fields and poses a more serious threat to food safety. A "red queen premise" surmises that the coevolution of phages and bacteria results in an evolutionary arms race that compels phages to adapt and survive bacterial antiphage strategies. Phages and their lysins are therefore useful toolkits in the design of novel antimicrobials in food protection and foodborne pathogens control, and the modality of using phages as a targeted vector against foodborne pathogens is gaining momentum based on many encouraging research outcomes. In this review, we discuss the rationale of using phages and their lysins as weapons against spoilage organisms and foodborne pathogens, and outline the targeted conquest or dodge mechanism of phages and the development of novel phage prospects. We also highlight the implementation of phages and their lysins to control foodborne pathogens in a farm-table-hospital domain in the postantibiotic era.


Assuntos
Infecções Bacterianas , Bacteriófagos , Bactérias/genética , Inocuidade dos Alimentos , Humanos
3.
Biosci Biotechnol Biochem ; 81(10): 1891-1898, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28799853

RESUMO

This study investigated the effects of high-intensity ultrasound and glycosylation on the structural and interfacial properties of the Maillard reaction conjugates of buckwheat protein isolate (BPI). The covalent attachment of dextran to BPI was confirmed by examination of the Fourier-transform infrared spectra. Emulsifying properties of the conjugates obtained by ultrasound treatment were improved as compared to those obtained by classical heating. Structural feature analyses suggested that conjugates obtained by ultrasound treatment had less α-helix and more random coil, higher surface hydrophobicity and less compact tertiary structure as compared to those obtained by classical heating. The surface activity measurement revealed that the BPI-dextran conjugates obtained by ultrasound treatment were closely packed and that each molecule occupied a small area of the interface. Combination of ultrasonic treatment and glycosylation was proved to be an efficient way to develop new stabilizers and thickening agents for food in this study.


Assuntos
Dextranos/metabolismo , Fagopyrum/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ondas Ultrassônicas , Adsorção , Glicosilação , Interações Hidrofóbicas e Hidrofílicas , Reação de Maillard , Óleos/química , Estabilidade Proteica , Propriedades de Superfície , Água/química
4.
Heliyon ; 10(5): e25505, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434336

RESUMO

Shanghai as an international metropolis is representative of modern urban agriculture in China, so it is of great significance to analyse the pesticide residue in vegetables grown in Shanghai. This study investigated the residue of 68 commonly used pesticides (divided into insecticides, fungicides, herbicides and plant growth regulators) in 7028 vegetable samples in Shanghai from 2018 to 2021, and estimated the dietary intake risk of these pesticides. These samples were divided into 6 categories. A total of 29.21% of vegetable samples had pesticide residues, and 0.47% of samples exceeded the maximum residue limits (MRLs) set by the national food safety standard of China. Leafy vegetables had the highest detection rate of pesticide residues (32.9%), multiple detection rate (12.2%), pesticide residue concentration (35.7 mg/kg), and the number of samples exceeding the MRL (30). There were 36 out of 68 pesticides detected in vegetables, and the top 3 were dimethomorph, propamocarb and acetamiprid. The target hazard quotient (THQ) and hazard index (HI) of these noticeablepesticides were all less than 1, illustrating that there may be no obvious health hazard for residents exposed to the pesticide levels. This study can promote the green development of the pesticide industry and provide important reference data for the monitoring of pesticide residues and their hazards under modern urban agriculture.

5.
Sheng Wu Gong Cheng Xue Bao ; 37(7): 2366-2378, 2021 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-34327902

RESUMO

Food-borne pathogens pose great risks to human health and public safety, and the formation of biofilm exacerbates their pathogenicity and antimicrobial resistance. Enzymes can target special substances in the biofilm to disintegrate the biofilm of food-borne pathogens, which has great potential for applications. This review summarized the progress of using enzymes to disintegrate the biofilms of food-borne pathogens, highlighting quorum-quenching enzymes, C-di-GMP metabolic enzymes, as well as extracellular matrix hydrolases. Finally, challenges and perspectives on developing enzymes into effective products for disintegrating the biofilms of food-borne pathogens were discussed.


Assuntos
Biofilmes , Percepção de Quorum , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA