Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
NAR Genom Bioinform ; 4(1): lqac005, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35156024

RESUMO

HKG is the first fully accessible variant database for Hong Kong Cantonese, constructed from 205 novel whole-exome sequencing data. There has long been a research gap in the understanding of the genetic architecture of southern Chinese subgroups, including Hong Kong Cantonese. HKG detected 196 325 high-quality variants with 5.93% being novel, and 25 472 variants were found to be unique in HKG compared to three Chinese populations sampled from 1000 Genomes (CHN). PCA illustrates the uniqueness of HKG in CHN, and the admixture study estimated the ancestral composition of HKG and CHN, with a gradient change from north to south, consistent with their geological distribution. ClinVar, CIViC and PharmGKB annotated 599 clinically significant variants and 360 putative loss-of-function variants, substantiating our understanding of population characteristics for future medical development. Among the novel variants, 96.57% were singleton and 6.85% were of high impact. With a good representation of Hong Kong Cantonese, we demonstrated better variant imputation using reference with the addition of HKG data, thus successfully filling the data gap in southern Chinese to facilitate the regional and global development of population genetics.

2.
Am J Med Genet A ; 149A(7): 1452-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19533785

RESUMO

Marfan syndrome is an autosomal dominant connective tissue disorder, and mutations in the FBN1 and TGFBR2 genes have been identified in probands with MFS and related phenotypes. Using DHPLC and sequencing, we studied the mutation spectrum in 65 probands with Marfan syndrome and related phenotypes. A total of 24 mutations in FBN1 were identified, of which 19 (nine missense, six frameshift, two nonsense and two affecting splice junctions) were novel. In the remaining 41 probands, six were identified to have novel TGFBR2 mutations (one frameshift and five missense mutations). All novel mutations found in this study were confirmed to be absent in 50 unrelated normal individuals of the same ethnic background. In probands who fulfilled the Ghent criteria (n = 16), mutations in FBN1 were found in 81% of cases. None of those with TGFBR2 mutations fulfilled the Ghent criteria. Novel missense mutations of unknown significance were classified according to the latest ACMG guidelines and their likelihood to be causative was evaluated.


Assuntos
Síndrome de Marfan/genética , Proteínas dos Microfilamentos/genética , Mutação de Sentido Incorreto , Proteínas Serina-Treonina Quinases/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Adolescente , Adulto , Sequência de Aminoácidos , Criança , Pré-Escolar , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Fibrilina-1 , Fibrilinas , Testes Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Fenótipo , Receptor do Fator de Crescimento Transformador beta Tipo II , Homologia de Sequência de Aminoácidos , Adulto Jovem
3.
Autism Res ; 11(8): 1098-1109, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29608813

RESUMO

PTEN is a tumor suppressor gene inactivated in over 30% of human cancers. It encodes a lipid phosphatase that serves as a gatekeeper of the phosphoinositide 3-kinase signaling pathway. Germline mutation frequently occurs in this gene in patients diagnosed with PTEN Hamartoma Tumor Syndrome (PHTS). PHTS individuals are characterized by macrocephaly, benign growth of multiple tissues and increased tumor risk. In addition, autistic phenotypes are found in 10-20% of individuals carrying the germline PTEN mutation with macrocephaly. In this report, 13 suspected PHTS patients were screened for mutation in the PTEN gene. A missense variant (c. 302T > C) substituting the isoleucine at codon 101 to a threonine, a single nucleotide insertion (c. 327-328insC) causing a frame shift mutation and termination at codon 109, and a nonsense variant (c. 1003C > T) truncated the protein at codon 335 were identified. The I101T mutation significantly reduced PTEN protein expression levels by 2.5- to 4.0-fold. Mechanistically, I101T reduced the protein half-life of PTEN possibly due to enhanced polyubiquitination at Lysine 13. However, the I101T mutant retained almost 30% of the lipid phosphatase activity of the wild-type protein. Finally, the I101T mutant has reduced phosphorylation at a PTEN auto-dephosphorylation site at Threonine 366 and a lowered ratio of nuclear to cytosolic protein level. These partial losses of multiple PTEN biochemical functions may contribute to the tissue overgrowth and autistic features of this PHTS patient. Autism Res 2018, 11: 1098-1109. © 2018 The Authors Autism Research published by International Society for Autism Research and Wiley Periodicals, Inc. LAY SUMMARY: The genetics of autism spectrum disorders is highly complex with individual risk influenced by both genetic and environmental factors. Mutation in the human PTEN gene confers a high risk of developing autistic behavior. This report revealed that PTEN mutations occurred in 23% of a selected group of Hong Kong patients harboring autistic features with gross overgrowth symptoms. Detailed characterization of a PTEN mutation revealed reduced protein stability as one of the underlying mechanisms responsible for reduced PTEN activity.


Assuntos
Transtorno do Espectro Autista/genética , Megalencefalia/genética , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , PTEN Fosfo-Hidrolase/genética , Monoéster Fosfórico Hidrolases/metabolismo , Transtorno do Espectro Autista/complicações , Western Blotting , Células Cultivadas , Criança , Feminino , Imunofluorescência , Hong Kong , Humanos , Masculino , Megalencefalia/complicações , Transtornos do Neurodesenvolvimento/complicações , Fosfatidilinositol 3-Quinases , Monoéster Fosfórico Hidrolases/genética , Estabilidade Proteica
4.
Chin Med J (Engl) ; 119(13): 1079-87, 2006 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-16834926

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked recessive, allelic disorders. This study was conducted to look into the spectrum of DMD gene mutations in Hong Kong Chinese patients with Duchenne or Becker muscular dystrophy (DMD/BMD), and to study genotype-phenotype correlation. METHODS: A retrospective review of 67 patients. RESULTS: Twenty-three (34.3%) patients had exon deletions; whereas 5 (7.5%) patients had exon duplications. Twenty-three (34.3%) patients had small mutations, including 17 point mutations and 6 small insertions or deletions. No correlation was found between the type of mutation and the muscle phenotype or mental retardation. Significantly fewer maternal carriers were found in patients with exon deletions, and a positive family history was more common in those with small mutations. DMD phenotype was significantly less common in patients with exon deletions/duplications at the 5' hotspot, whereas all 4 small mutations associated with mental retardation were located in the 3' end of the gene. CONCLUSIONS: The percentage of DMD exon deletions in local Chinese patients was significantly lower than the commonly quoted 60%. This indicated an ethnic or regional difference in predisposition to DMD exon deletions.


Assuntos
Distrofina/genética , Distrofia Muscular de Duchenne/genética , Mutação , Povo Asiático , Éxons , Genótipo , Heterozigoto , Humanos , Deficiência Intelectual/genética , Fenótipo , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA