Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39118479

RESUMO

BACKGROUND: Sanqi, the root of Panax notoginseng, has long been recognized for its therapeutic effects on cardiovascular diseases. Saponins, including ginsenosides and notoginsenosides, are the main bioactive components of P. notoginseng. The biosynthesis of saponins is closely related to the defense responses orchestrated by endogenous hormones. RESULTS: To provide new insights into the underlying role of phytohormone jasmonic acid (JA) in the synthesis and regulation of saponins, we performed an ultra-performance liquid chromatography analysis of different tissues of P. notoginseng aged 2-4 years. Moreover, by combined evaluation of saponin content and transcriptome profiling of each tissue, the spatial and temporal distribution of saponins was analyzed. N notoginsenoside R1, ginsenoside Rb1 and ginsenoside Rd accumulated in the underground tissues, including the root, tuqi, fibril and rhizome. In agreement with this data, the corresponding genes of the endogenous hormone JAs, especially coronatine insensitive 1 (COI1) and myelocytomatosis proteins 2 (MYC2), were predominantly expressed in the underground tissues. The tissue- and age-specific distribution of saponins was consistent with the expression of genes involved in JA biosynthetic, metabolic and signaling pathways. CONCLUSION: The present study has revealed the temporal and spatial effects of endogenous phtohormones in the synthesis and regulation of notoginsenosides, which will provide a significant impact on improving the ecological planting technology, cultivating new high-quality varieties and protecting the rare resources of medicinal P. notoginseng. © 2024 Society of Chemical Industry.

2.
Plant J ; 109(3): 555-567, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34750899

RESUMO

Triterpenes are among the most diverse plant natural products, and their diversity is closely related to various triterpene skeletons catalyzed by different 2,3-oxidosqualene cyclases (OSCs). Celastrol, a friedelane-type triterpene with significant bioactivities, is specifically distributed in higher plants, such as Celastraceae species. Friedelin is an important precursor for the biosynthesis of celastrol, and it is synthesized through the cyclization of 2,3-oxidosqualene, with the highest number of rearrangements being catalyzed by friedelane-type triterpene cyclases. However, the molecular mechanisms underlying the catalysis of friedelin production by friedelane-type triterpene cyclases have not yet been fully elucidated. In this study, transcriptome data of four celastrol-producing plants from Celastraceae were used to identify a total of 21 putative OSCs. Through functional characterization, the friedelane-type triterpene cyclases were separately verified in the four plants. Analysis of the selection pressure showed that purifying selection acted on these OSCs, and the friedelane-type triterpene cyclases may undergo weaker selective restriction during evolution. Molecular docking and site-directed mutagenesis revealed that changes in some amino acids that are unique to friedelane-type triterpene cyclases may lead to variations in catalytic specificity or efficiency, thereby affecting the synthesis of friedelin. Our research explored the functional diversity of triterpene synthases from a multispecies perspective. It also provides some references for further research on the relative mechanisms of friedelin biosynthesis.


Assuntos
Celastrus/genética , Celastrus/metabolismo , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Triterpenos Pentacíclicos/metabolismo , Tripterygium/genética , Tripterygium/metabolismo , Vias Biossintéticas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Plantas Medicinais/genética , Plantas Medicinais/metabolismo
3.
Plant Biotechnol J ; 21(1): 165-175, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36161753

RESUMO

Selaginella moellendorffii miltiradiene synthase (SmMDS) is a unique bifunctional diterpene synthase (diTPS) that catalyses the successive cyclization of (E,E,E)-geranylgeranyl diphosphate (GGPP) via (+)-copalyl diphosphate (CPP) to miltiradiene, which is a crucial precursor of important medicinal compounds, such as triptolide, ecabet sodium and carnosol. Miltiradiene synthetic processes have been studied in monofunctional diTPSs, while the precise mechanism by which active site amino acids determine product simplicity and the experimental evidence for reaction intermediates remain elusive. In addition, how bifunctional diTPSs work compared to monofunctional enzymes is attractive for detailed research. Here, by mutagenesis studies of SmMDS, we confirmed that pimar-15-en-8-yl+ is an intermediate in miltiradiene synthesis. Moreover, we determined the apo-state and the GGPP-bound state crystal structures of SmMDS. By structure analysis and mutagenesis experiments, possible contributions of key residues both in class I and II active sites were suggested. Based on the structural and functional analyses, we confirmed the copal-15-yl+ intermediate and unveiled more details of the catalysis process in the SmMDS class I active site. Moreover, the structural and experimental results suggest an internal channel for (+)-CPP produced in the class II active site moving towards the class I active site. Our research is a good example for intermediate identification of diTPSs and provides new insights into the product specificity determinants and intermediate transport, which should greatly facilitate the precise controlled synthesis of various diterpenes.


Assuntos
Alquil e Aril Transferases , Diterpenos , Alquil e Aril Transferases/genética , Diterpenos/metabolismo
4.
Angew Chem Int Ed Engl ; 62(48): e202313429, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37840440

RESUMO

The oxidosqualene cyclase (OSC) catalyzed cyclization of the linear substrate (3S)-2,3-oxidosqualene to form diverse pentacyclic triterpenoid (PT) skeletons is one of the most complex reactions in nature. Friedelin has a unique PT skeleton involving a fascinating nine-step cation shuttle run (CSR) cascade rearrangement reaction, in which the carbocation formed at C2 moves to the other side of the skeleton, runs back to C3 to yield a friedelin cation, which is finally deprotonated. However, as crystal structure data of plant OSCs are lacking, it remains unknown why the CSR cascade reactions occur in friedelin biosynthesis, as does the exact catalytic mechanism of the CSR. In this study, we determined the first cryogenic electron microscopy structure of a plant OSC, friedelin synthase, from Tripterygium wilfordii Hook. f (TwOSC). We also performed quantum mechanics/molecular mechanics simulations to reveal the energy profile for the CSR cascade reaction and identify key residues crucial for PT skeleton formation. Furthermore, we semirationally designed two TwOSC mutants, which significantly improved the yields of friedelin and ß-amyrin, respectively.


Assuntos
Transferases Intramoleculares , Triterpenos , Triterpenos/química , Transferases Intramoleculares/genética , Catálise , Cátions
5.
Nat Prod Rep ; 39(9): 1856-1875, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35913409

RESUMO

Covering: up to 2022Podophyllotoxin (PTOX, 1), a kind of aryltetralin-type lignan, was first discovered in the plant Podophyllum peltatum and its structure was clarified by W. Borsche and J. Niemann in 1932. Due to its potent anti-cancer and anti-viral activities, it is considered one of the molecules most likely to be developed into modern drugs. With the increasing market demand and insufficient storage of natural resources, it is crucial to expand the sources of PTOXs. The original extraction method from plants has gradually failed to meet the requirements, and the biosynthesis and total synthesis have become the forward-looking alternatives. As key enzymes in the biosynthetic pathway of PTOXs and their catalytic mechanisms being constantly revealed, it is possible to realize the heterogeneous biosynthesis of PTOXs in the future. Chemical and chemoenzymatic synthesis also provide schemes for strictly controlling the asymmetric configuration of the tetracyclic core. Currently, the pharmacological activities of some PTOX derivatives have been extensively studied, laying the foundation for clinical candidate drugs. This review focuses primarily on the latest research progress in the biosynthesis, total synthesis, and pharmacological activities of PTOX and its derivatives, providing a more comprehensive understanding of these widely used compounds and supporting the future search for clinical applications.


Assuntos
Lignanas , Podofilotoxina , Vias Biossintéticas , Catálise , Podofilotoxina/farmacologia
6.
Zhongguo Zhong Yao Za Zhi ; 46(22): 5727-5735, 2021 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-34951160

RESUMO

Mecicinal plants boast abundant natural compounds with significant pharmacological activity, and such compounds, featuring diversified and complex structures, can be used for research and development of drugs. At present, these natural compounds are directly extracted from herbs which, however, suffer from damaged wild resources and shortage of planting resources attributing to the increasing demand. Moreover, the low content in medicinal plants and complex structures are another challenge to the research and development of drugs. Heterologous synthesis with synthetic biology methods is a solution that has attracted wide attention. Synthetic bio-logy for the production of natural active compounds in Chinese medicinal plants involves the exploration of key enzymes in compound bio-synthetic pathways from plants, analysis of enzyme functions and mechanisms, and reconstruction and optimization of biosynthetic pathways in microorganisms for efficient synthesis of compounds. This study briefed the development process of synthetic biology and the biosynthetic pathways of terpenoids, alkaloids, and flavonoids, and summarized the related strategies of synthetic biology such as the reconstruction and optimization of metabolic pathways, regulation of fermentation process, and strain improvement, and the latest applications of heterogeneous synthetic biology in the production of natural compounds from Chinese medicinals. This study is expected to serve as a reference for the efficient production of terpenoids, alkaloids, flavonoids, and other active compounds from Chinese medicinal plants with strategies of synthetic biology.


Assuntos
Alcaloides , Plantas Medicinais , Vias Biossintéticas , China , Biologia Sintética
7.
Metab Eng ; 60: 87-96, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32268192

RESUMO

Miltiradiene is a key intermediate in the biosynthesis of many important natural diterpene compounds with significant pharmacological activity, including triptolide, tanshinones, carnosic acid and carnosol. Sufficient accumulation of miltiradiene is vital for the production of these medicinal compounds. In this study, comprehensive engineering strategies were applied to construct a high-yielding miltiradiene producing yeast strain. First, a chassis strain that can accumulate 2.1 g L-1 geranylgeraniol was constructed. Then, diterpene synthases from various species were evaluated for their ability to produce miltiradiene, and a chimeric miltiradiene synthase, consisting of class II diterpene synthase (di-TPS) CfTPS1 from Coleus forskohlii (Plectranthus barbatus) and class I di-TPS SmKSL1 from Salvia miltiorrhiza showed the highest efficiency in the conversion of GGPP to miltiradiene in yeast. Moreover, the miltiradiene yield was further improved by protein modification, which resulted in a final yield of 550.7 mg L-1 in shake flasks and 3.5 g L-1 in a 5-L bioreactor. This work offers an efficient and green process for the production of the important intermediate miltiradiene, and lays a foundation for further pathway reconstruction and the biotechnological production of valuable natural diterpenes.


Assuntos
Diterpenos/metabolismo , Engenharia Metabólica/métodos , Proteínas Mutantes Quiméricas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Terpenos/metabolismo , Vias Biossintéticas , Sistemas CRISPR-Cas , Simulação por Computador , Diterpenos/química , Fermentação , Redes e Vias Metabólicas , Proteínas Mutantes Quiméricas/genética , Mutação , Plasmídeos
8.
Physiol Plant ; 169(1): 40-48, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31758560

RESUMO

1-Deoxy-d-xylulose-5-phosphate synthase (DXS) is the first enzyme in the plant 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway of terpenoid synthesis. TwDXS is a prominent protein in the Tripterygium wilfordii proteome, with especially high expression in the root periderm. It is significantly regulated by methyl jasmonate. Here, we studied the influence of TwDXS expression on bioactive terpenoids in T. wilfordii. Specific fragments of TwDXS (GenBank: AKP20998.1) with lengths of 2148 and 437 bp were amplified to construct the overexpression (OE) and RNA-interference (RNAi) vectors, respectively. After transformation of suspension cells, the expression of TwDXS and genes related to the terpenoid biosynthetic pathway was measured using qRT-PCR. TwDXS mRNA level was 153 and 43% of the control in the OE and RNAi lines. Related genes in the 2-C-methyl-d-erythritol 4-phosphate (MEP), mevalonic acid (MVA) and downstream pathways showed similar trends to the changes of TwDXS expression. Ultra Performance Liquid Chromatography (UPLC) was employed to measure the accumulation of terpenoids. Importantly, the triptolide content showed significant differences in both the TwDXS OE (222.35% of the control) and RNAi (34.86% of the control). However, there were no obvious changes in the celastrol content. In this study, we verified that the expression of TwDXS affects triptolide but not celastrol in T. wilfordii via both TwDXS OE and RNAi experiments.


Assuntos
Diterpenos/análise , Eritritol/análogos & derivados , Fenantrenos/análise , Fosfatos Açúcares , Transferases/metabolismo , Tripterygium/enzimologia , Compostos de Epóxi/análise , Transferases/genética , Tripterygium/genética
9.
Plant J ; 93(1): 50-65, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29086455

RESUMO

Tripterygium wilfordii, which has long been used as a medicinal plant, exhibits impressive and effective anti-inflammatory, immunosuppressive and anti-tumor activities. The main active ingredients are diterpenoids and triterpenoids, such as triptolide and celastrol, respectively. A major challenge to harnessing these natural products is that they are found in very low amounts in planta. Access has been further limited by the lack of knowledge regarding their underlying biosynthetic pathways, particularly for the abeo-abietane tri-epoxide lactone triptolide. Here suspension cell cultures of T. wilfordii were found to produce triptolide in an inducible fashion, with feeding studies indicating that miltiradiene is the relevant abietane olefin precursor. Subsequently, transcriptome data were used to identify eight putative (di)terpene synthases that were then characterized for their potential involvement in triptolide biosynthesis. This included not only biochemical studies which revealed the expected presence of class II diterpene cyclases that produce the intermediate copalyl diphosphate (CPP), along with the more surprising finding of an atypical class I (di)terpene synthase that acts on CPP to produce the abietane olefin miltiradiene, but also their subcellular localization and, critically, genetic analysis. In particular, RNA interference targeting either both of the CPP synthases, TwTPS7v2 and TwTPS9v2, or the subsequently acting miltiradiene synthase, TwTPS27v2, led to decreased production of triptolide. Importantly, these results then both confirm that miltiradiene is the relevant precursor and the relevance of the identified diterpene synthases, enabling future studies of the biosynthesis of this important bioactive natural product.


Assuntos
Alquil e Aril Transferases/metabolismo , Diterpenos/metabolismo , Fenantrenos/metabolismo , Tripterygium/enzimologia , Alquil e Aril Transferases/genética , Vias Biossintéticas , Compostos de Epóxi/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Medicinais , Interferência de RNA , Tripterygium/genética
10.
Biochem Biophys Res Commun ; 512(2): 310-313, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30890335

RESUMO

The labdane-related diterpenoids are an important superfamily of natural products. Their structural diversity mainly depends on diterpene synthases, which generate the hydrocarbon skeletal structures. Isodon rubescens contains an expanded family of class I terpene synthases with different functions. Here we report a novel class I terpene synthase cDNA (IrKSL3a) with loss of 18 nucleotides compared with the reported cDNA sequence (IrKSL3). Inspection of IrKSL3 genomic sequence indicated that IrKSL3a and IrKSL3 transcripts may be generated by an alternative splicing event that utilizes different 3' splice site. In vitro assays showed that IrKSL3a produced isopimaradiene and miltiradiene, while IrKSL3 only produced miltiradiene. Protein sequence alignment found the six residues encoded by the alternative exon was unique to IrKSL3, which are 17 residues away from the conserved DDXXD motif. A deletion mutant of IrKSL3 showed that maintaining two residues within the six-amino acid is sufficient for miltiradiene production, while the other mutants lost nearly all enzymatic function. Our results illustrated how product outcomes can be changed by alternative splicing, and further gave an interesting example for studying the loop conformation in tuning product outcome in class I terpene synthase.


Assuntos
Alquil e Aril Transferases/genética , Isodon/enzimologia , Isodon/genética , Proteínas de Plantas/genética , Alquil e Aril Transferases/classificação , Alquil e Aril Transferases/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Sequência de Bases , Domínio Catalítico/genética , DNA de Plantas/genética , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Deleção de Sequência , Homologia de Sequência de Aminoácidos
11.
Planta ; 250(5): 1613-1620, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31388830

RESUMO

MAIN CONCLUSION: A novel GA13-oxidase ofTripterygium wilfordii, TwGA13ox, is a 2-oxoglutarate-dependent dioxygenase. It specifically catalyzes the conversion of GA9to GA20, but not GA4to GA1. Gibberellins (GAs) play essential roles in plant growth and development. Previous characterization of GA20- and GA3-oxidases yielded a large number of genetic elements that can interconvert different GAs. However, enzymes that catalyze the 13-hydroxylation step are rarely identified. Here, we report that the GA13-oxidase of Tripterygium wilfordii, TwGA13ox, is a 2-oxoglutarate-dependent dioxygenase instead of reported cytochrome P450 oxygenases, among 376 differential proteins in comparative proteomics. Phylogenetic analysis showed that the enzyme resides in its own independent branch in the DOXC class. Unexpectedly, it specifically catalyzes the conversion of GA9 to GA20, but not GA4 to GA1. Contrary to the previous research, TwGA13ox transcriptional expression was upregulated ~ 146 times by exogenous application of methyl jasmonate (MeJA). RNAi targeting of TwGA13ox in T. wilfordii led to an 89.9% decrease of triptolide, a diterpenoid epoxide with extensive anti-inflammatory and anti-tumor properties. In subsequent MeJA supplementation experiments, triptolide production increased 13.4-times. TwGA13ox displayed root-specific expression. Our results provide a new GA13-oxidase from plants and elucidate the metabolic associations within the diterpenoid biosynthetic pathway (GAs, triptolide) at the genetic level.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Dioxigenases/metabolismo , Regulação Enzimológica da Expressão Gênica , Giberelinas/metabolismo , Oxirredutases/metabolismo , Oxilipinas/farmacologia , Tripterygium/enzimologia , Vias Biossintéticas , Dioxigenases/genética , Diterpenos/metabolismo , Compostos de Epóxi/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Cetoglutáricos/metabolismo , Oxirredutases/genética , Fenantrenos/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tripterygium/genética
12.
Biochem J ; 475(17): 2713-2725, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30049895

RESUMO

Cryptomeridiol, a typical eudesmane diol, is the active principle component of the antispasmodic Proximol. Although it has been used for many years, the biosynthesis pathway of cryptomeridiol has remained blur. Among terpenoid natural products, terpenoid cyclases are responsible for cyclization and generation of hydrocarbon backbones. The cyclization is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sesquiterpene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (E,E)-farnesyl pyrophosphate (FPP) to unexpected eudesmane diols, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by NMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwCS can directly produce eudesmane diols from FPP. Some key residues for TwCS catalysis were screened depending on the molecular model of TwCS and mutagenesis studies. As cryptomeridiol showed a small amount of volatile and medicinal properties, the biosynthesis of cryptomeridiol was reconstructed in S. cerevisiae Optimized assays including modular pathway engineering and the CRISPR-cas9 system were successfully used to improve the yield of cryptomeridiol in the S. cerevisiae The best engineered strain TE9 (BY4741 erg9::Δ-200-176 rox1::mut/pYX212-IDI + TwCS/p424-tHMG1) ultimately produced 19.73 mg/l cryptomeridiol in a shake flask culture.


Assuntos
Carbono-Carbono Liases , Microrganismos Geneticamente Modificados , Naftalenos/metabolismo , Proteínas de Plantas , Saccharomyces cerevisiae , Sesquiterpenos de Eudesmano/biossíntese , Tripterygium/genética , Carbono-Carbono Liases/genética , Carbono-Carbono Liases/metabolismo , Engenharia Metabólica , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sesquiterpenos de Eudesmano/genética , Tripterygium/enzimologia
13.
Biotechnol Lett ; 40(2): 419-425, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29270714

RESUMO

OBJECTIVE: To examine the putative regulatory role of TwDXR in terpenoid biosynthesis and terpenoid biosynthetic pathway-related gene expression, through overexpression and RNA interference with TwDXR. RESULTS: We obtained 1410 and 454 bp TwDXR-specific fragments to construct overexpression and RNAi vectors. qRT-PCR was used to detect the expression of TwDXR and terpenoid biosynthesis pathway-related genes. The overexpression of TwDXR led to a 285% upregulation and the TwDXR RNAi led to a reduction to 26% of the control (empty vector-transformed cells) levels. However, pathway-related genes displayed different trends. When TwDXR was overexpressed, TwDXS expression decreased by 31% but increased to 198% when TwDXR expression was inhibited. The accumulation of terpenoids was also assayed. In the overexpression group, differences were not significant whereas the contents of triptolide and celastrol in the TwDXR RNAi samples were diminished by 27.3 and 24.0%, respectively. CONCLUSION: The feedback regulation of gene transcription and the accumulation of terpenoids in terpenoid biosynthesis in Tripterygium wilfordii were verified by TwDXR overexpression and RNAi experiments.


Assuntos
Aldose-Cetose Isomerases/metabolismo , Proteínas de Plantas/metabolismo , Interferência de RNA , Terpenos/metabolismo , Tripterygium/metabolismo , Aldose-Cetose Isomerases/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Redes e Vias Metabólicas , Proteínas de Plantas/genética , Tripterygium/enzimologia , Tripterygium/genética
14.
J Asian Nat Prod Res ; 20(7): 595-604, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28276759

RESUMO

The biosynthetic pathways of phytosterols and steroidal saponins are located in two adjacent branches which share cycloartenol as substrate. The rate-limiting enzyme S-adenosyl-L-methionine-sterol-C24-methyltransferase 1 (SMT1) facilitates the metabolic flux toward phytosterols. It catalyzes the methylation of the cycloartenol in the side chain of the C24-alkyl group, to generate 24(28)-methylene cycloartenol. In this study, we obtained two full-length sequences of SMT1 genes from Pari polyphylla, designated PpSMT1-1 and PpSMT1-2. The full-length cDNA of PpSMT1-1 was 1369 bp long with an open reading frame (ORF) of 1038 bp, while the PpSMT1-2 had a length of 1222 bp, with a 1005 bp ORF. Bioinformatics analysis confirmed that the two cloned SMTs belong to the SMT1 family. The predicted function was further validated by performing in vitro enzymatic reactions, and the results showed that PpSMT1-1 encodes a cycloartenol-C24-methyltransferase, which catalyzes the conversion of cycloartenol to 24-methylene cycloartenol, whereas PpSMT1-2 lacked this catalytic activity. The tissue expression patterns of the two SMTs revealed differential expression in different organs of Paris polyphylla plants of different developmental stage and age. These results lay the foundation for detailed genetic studies of the biosynthetic pathways of steroid compounds, which constitute the main class of active substances found in P. polyphylla.


Assuntos
Melanthiaceae/enzimologia , Melanthiaceae/genética , Metiltransferases/genética , Sequência de Bases , Catálise , Clonagem Molecular , DNA de Plantas/química , DNA de Plantas/genética , Medicamentos de Ervas Chinesas , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Estrutura Molecular , Fases de Leitura Aberta , Fitosteróis/metabolismo , Triterpenos/metabolismo
15.
Zhongguo Zhong Yao Za Zhi ; 42(7): 1312-1318, 2017 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-29052392

RESUMO

In this study, we cloned a monoterpene synthases, TwMS from Tripterygium wilfordii suspension cells. TwMS gene contained a 1 797 bp open reading frame (ORF), encoding a polypeptide of 579 amino acids, which deduced isoelectric point (pI) was 6.10 and the calculated molecular weight was 69.75 kDa. Bioinformation analysis showed that the sequence of TwMS was consistent with the feature of monoterpene synthases. Differential expression analysis revealed that the relative expression level of TwMS increased significantly after being induced by methyl jasmonate (MeJA). The highest expression level occurred at 24 h. TwMS protein was successfully expressed in Escherichia coli BL21 (DE3), which laid the foundation for identifying the function of T. wilfordii monoterpene synthases.


Assuntos
Liases Intramoleculares/genética , Proteínas de Plantas/genética , Tripterygium/genética , Sequência de Aminoácidos , Clonagem Molecular , Filogenia , Tripterygium/enzimologia
16.
Zhongguo Zhong Yao Za Zhi ; 42(2): 220-225, 2017 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-28948723

RESUMO

Based on the transcriptome data, the study cloned full-length cDNA of TwGPPS1 and TwGPPS2 genes from Tripterygium wilfordii suspension cells and then analyzed the bioinformation of the sequence and protein expression. The cloned TwGPPS1 has a 1 278 bp open reading frame (ORF) encoding a polypeptide of 425 amino acids. The deduced isoelectric point (pI) was 6.68, a calculated molecular weight was about 47.189 kDa. The full-length cDNA of the TwGPPS2 contains a 1 269 bp open reading frame (ORF) encoding a polypeptide of 422 amino acids. The deduced isoelectric point (pI) was 6.71, a calculated molecular weight was about 46.774 kDa.The entire reading frame of TwGPPS1,2 was cloned into the pET-32a(+) vector and expressed in E. coli BL21 (DE3) cells to obtain the TwGPPS protein, which laid a basis for further study on the regulation of terpenoid secondary metabolism and biological synthesis.


Assuntos
Difosfatos/metabolismo , Diterpenos/metabolismo , Geraniltranstransferase/genética , Proteínas de Plantas/genética , Tripterygium/enzimologia , Clonagem Molecular , DNA Complementar , Filogenia , Metabolismo Secundário , Tripterygium/genética
17.
Biotechnol Appl Biochem ; 63(6): 863-869, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26234546

RESUMO

Tripterygium wilfordii Hook.F. is one of the most valuable medicinal plants because it contains a large variety of active terpenoid compounds, including triptolide, celastrol, and wilforlide. All of the pharmacologically active secondary metabolites are synthesized from the 2-C-methyl-d-erythritol 4-phosphate and mevalonate pathway in the isoprenoid biosynthetic system. The key step in this pathway is the isomerization of dimethylallyl diphosphate and isopentenyl diphosphate, which is catalyzed by isopentenyl diphosphate isomerase (IPI). In the present study, a full-length cDNA encoding IPI (designate as TwIPI, GenBank accession no.KT279355) was cloned from a suspension of cultured cells from T. wilfordii. The full-length cDNA of TwIPI was 1,564 bp and encoded a polypeptide of 288 amino acids. The bioinformatics analysis showed that the deduced TwIPI sequence contained the TNTCCSHPL and WGEHELDY motif. The transcription level of the TwIPI in the suspension cells increased almost fivefold after treatment with methyl jasmonate as an elicitor. A functional color assay in Escherichia coli indicated that TwIPI could promote the accumulation of lycopene and encoded a functional protein.


Assuntos
Isomerases de Ligação Dupla Carbono-Carbono/genética , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Tripterygium/enzimologia , Tripterygium/genética , Sequência de Aminoácidos , Isomerases de Ligação Dupla Carbono-Carbono/química , Clonagem Molecular , Biologia Computacional , Hemiterpenos , Análise de Sequência de DNA , Terpenos/metabolismo
18.
J Asian Nat Prod Res ; 18(7): 619-28, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26785825

RESUMO

Celastrol is an important bioactive triterpenoid in traditional Chinese medicinal plant, Tripterygium wilfordii. Methyl Jasmonate (MJ) is a common plant hormone which can regulate the secondary metabolism in higher plants. In this study, the mevalonate (MVA) pathway genes in T. wilfordii were firstly cloned. The suspension cells of T. wilfordii were elicited by MJ, and the expressions of MVA pathway genes were all enhanced in different levels ranging from 2.13 to 22.33 times of that at 0 h. The expressions were also enhanced compared with the CK group separately. The accumulation of celastrol in the suspension cells after the treatment was quantified and co-analyzed with the genes expression levels. The production of celastrol was significantly increased to 0.742 mg g(-1) after MJ treatment in 288 h which is consistent with the genes expressions. The results provide plenty of gene information for the biosynthesis of terpenoids in T. wilfordii and a viable way to improve the accumulation of celastrol in T. wilfordii suspension cells.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Tripterygium/química , Tripterygium/genética , Triterpenos/farmacologia , Ácido Mevalônico/metabolismo , Estrutura Molecular , Triterpenos Pentacíclicos , Terpenos/metabolismo , Triterpenos/química , Triterpenos/metabolismo
19.
Yao Xue Xue Bao ; 51(4): 657-61, 2016 04.
Artigo em Chinês | MEDLINE | ID: mdl-29860753

RESUMO

In this paper, we cloned the full-length cDNA of TwSQS from Tripterygium wilfordii suspension cells(Gen Bank: KR401220) and performed the bioinformation and m RNA expression analysis. The expression after methyl jasmonate(MJ) treatment of the gene was detected by RT-PCR. The full-length cDNA of TwSQS was 1 800 bp containing a 1 242 bp open reading frame(ORF) encoding a polypeptide of 413 amino acids. The theoretical isoelectric point(p I) was 7.94 and the calculate molecular weight was about 47.20 k D. The relative expression level of TwSQS was deduced by MJ and reached the highest at 4 h after the treatment. The gene information we got in this study enriched the biosynthesis pathway of triterpenoids in Tripterygium wilfordii and laid foundation for further studies.


Assuntos
Farnesil-Difosfato Farnesiltransferase/metabolismo , Proteínas de Plantas/metabolismo , Tripterygium/genética , Acetatos , Sequência de Aminoácidos , Clonagem Molecular , Ciclopentanos , DNA Complementar , Farnesil-Difosfato Farnesiltransferase/genética , Fases de Leitura Aberta , Oxilipinas , Proteínas de Plantas/genética , Tripterygium/enzimologia
20.
Yao Xue Xue Bao ; 51(11): 1799-805, 2016 11.
Artigo em Chinês | MEDLINE | ID: mdl-29908530

RESUMO

24-Alkyl sterols are the major players in the control of membrane component and plant growth. In this paper, we cloned an important rate-limiting enzyme: sterol-C-24-methyl transferase (SMT) in the sterol biosynthetic pathway according to the transcriptome data of Tripterygium wilfordii. suspension cells, whose full-length cDNA was 1 631 bp with an open reading frame of 1 080 bp, encoding a protein of 359 amino acids. It was estimated that theoretical isoelectric point (p I) was 6.43 and the molecular mass was 40.0 kDa. Bioinformatics analysis attributed the SMT gene to SMT2 family. The expression vector was constructed as the pMAL-c2x-TwSMT2 plasmid and the recombinant protein was expressed in E. coil BL21(DE3) competent cells. After methyl jasmonate treatment, the relative expression level of Tw SMT2 has improved significantly in 24 h. SDS-PAGE electrophoresis and Western Blot showed that protein of TwSMT2 in BL21 (DE3) strain was expressed after induction by IPTG. In this study, TwSMT2 was cloned for the first time and the recombinant protein was expressed, which lay the foundation for elucidation of the sterol biosynthetic pathway of Tripterygium wilfordii in the future.


Assuntos
Proteínas de Plantas/genética , Transferases/genética , Tripterygium/genética , Sequência de Aminoácidos , Clonagem Molecular , Biologia Computacional , DNA Complementar , Tripterygium/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA