Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Biochem J ; 478(18): 3423-3428, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34554213

RESUMO

Nitroreductases catalyse the NAD(P)H-dependent nitro reduction in nitrofuran antibiotics, which activates them into cytotoxic molecules leading to cell death. The design of new effective nitrofuran antibiotics relies on knowledge of the kinetic mechanism and nitrofuran binding mode of microbial nitroreductases NfsA and NfsB. This has been hampered by multiple co-crystallisation studies revealing ligand binding in non-electron transfer competent states. In a recent study by Day et al. (2021) the authors investigated the likely reaction mechanism and mode of nitrofurantoin binding to NfsA using potentiometry, global kinetics analysis, crystallography and molecular dynamics simulations. Their findings suggest nitrofurantoin reduction proceeds via a direct hydride transfer from reduced FMN, while the crystallographic binding orientation is an inhibitory complex. Molecular dynamics simulations suggest ligand binding orientations is dependent on the oxidation state of the FMN. This study highlights the importance of utilising computational studies alongside traditional crystallographic approaches, when multiple stable ligand binding orientations can occur.


Assuntos
Antibacterianos , Nitrofuranos , Escherichia coli/metabolismo , Flavinas , Cinética , Nitrorredutases/metabolismo , Oxirredução
2.
Microb Cell Fact ; 19(1): 209, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33187524

RESUMO

The development of sustainable routes to the bio-manufacture of gaseous hydrocarbons will contribute widely to future energy needs. Their realisation would contribute towards minimising over-reliance on fossil fuels, improving air quality, reducing carbon footprints and enhancing overall energy security. Alkane gases (propane, butane and isobutane) are efficient and clean-burning fuels. They are established globally within the transportation industry and are used for domestic heating and cooking, non-greenhouse gas refrigerants and as aerosol propellants. As no natural biosynthetic routes to short chain alkanes have been discovered, de novo pathways have been engineered. These pathways incorporate one of two enzymes, either aldehyde deformylating oxygenase or fatty acid photodecarboxylase, to catalyse the final step that leads to gas formation. These new pathways are derived from established routes of fatty acid biosynthesis, reverse ß-oxidation for butanol production, valine biosynthesis and amino acid degradation. Single-step production of alkane gases in vivo is also possible, where one recombinant biocatalyst can catalyse gas formation from exogenously supplied short-chain fatty acid precursors. This review explores current progress in bio-alkane gas production, and highlights the potential for implementation of scalable and sustainable commercial bioproduction hubs.


Assuntos
Alcanos/metabolismo , Biocombustíveis/microbiologia , Ácidos Graxos/metabolismo , Gases/metabolismo , Engenharia Metabólica , Biologia Sintética/métodos , Vias Biossintéticas , Butanos/metabolismo , Carboxiliases/metabolismo , Engenharia Genética , Microbiologia Industrial , Oxirredução , Oxigenases/metabolismo , Propano/metabolismo
3.
Chembiochem ; 20(6): 785-792, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30431225

RESUMO

The monoterpenoid lactone derivative (+)-dihydrocarvide ((+)-DHCD) can be polymerised to form shape-memory polymers. Synthetic biology routes from simple, inexpensive carbon sources are an attractive, alternative route over chemical synthesis from (R)-carvone. We have demonstrated a proof-of-principle in vivo approach for the complete biosynthesis of (+)-DHCD from glucose in Escherichia coli (6.6 mg L-1 ). The pathway is based on the Mentha spicata route to (R)-carvone, with the addition of an 'ene'-reductase and Baeyer-Villiger cyclohexanone monooxygenase. Co-expression with a limonene synthesis pathway enzyme enables complete biocatalytic production within one microbial chassis. (+)-DHCD was successfully produced by screening multiple homologues of the pathway genes, combined with expression optimisation by selective promoter and/or ribosomal binding-site screening. This study demonstrates the potential application of synthetic biology approaches in the development of truly sustainable and renewable bioplastic monomers.


Assuntos
Lactonas/metabolismo , Monoterpenos/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Glucose/química , Lactonas/química , Engenharia Metabólica/métodos , Monoterpenos/química , Estudo de Prova de Conceito , Estereoisomerismo , Biologia Sintética/métodos
4.
Chemistry ; 25(12): 2983-2988, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30468546

RESUMO

The scope for biocatalytic modification of non-native carvone derivatives for speciality intermediates has hitherto been limited. Additionally, caprolactones are important feedstocks with diverse applications in the polymer industry and new non-native terpenone-derived biocatalytic caprolactone syntheses are thus of potential value for industrial biocatalytic materials applications. Biocatalytic reduction of synthetic analogues of R-(-)-carvone with additional substituents at C3 or C6, or both C3 and C6, using three types of OYEs (OYE2, PETNR and OYE3) shows significant impact of both regio-substitution and the substrate diastereomer. Bioreduction of (-)-carvone derivatives substituted with a Me and/or OH group at C6 is highly dependent on the diastereomer of the substrate. Derivatives bearing C6 substituents larger than methyl moieties are not substrates. Computer docking studies of PETNR with both (6S)-Me and (6R)-Me substituted (-)-carvone provides a model consistent with the outcomes of bioconversion. The products of bioreduction were efficiently biotransformed by the Baeyer-Villiger monooxygenase (BVase) CHMO_Phi1 to afford novel trisubstituted lactones with complete regioselectivity to provide a new biocatalytic entry to these chiral caprolactones. This provides both new non-native polymerization feedstock chemicals, but also with enhanced efficiency and selectivity over native (+)-dihydrocarvone Baeyer-Villigerase expansion. Optimum enzymatic reactions were scaled up to 60-100 mg, demonstrating the utility for preparative biocatalytic synthesis of both new synthetic scaffold-modified dihydrocarvones and efficient biocatalytic entry to new chiral caprolactones, which are potential single-isomer chiral polymer feedstocks.


Assuntos
Caproatos/metabolismo , Lactonas/metabolismo , Oxigenases de Função Mista/metabolismo , Monoterpenos/metabolismo , Oxirredutases/metabolismo , Rhodococcus/enzimologia , Saccharomyces cerevisiae/enzimologia , Biocatálise , Biotransformação , Caproatos/química , Monoterpenos Cicloexânicos , Microbiologia Industrial , Lactonas/química , Modelos Moleculares , Monoterpenos/química , Oxirredução , Rhodococcus/química , Rhodococcus/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Estereoisomerismo
5.
Biochemistry ; 57(13): 1997-2008, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29533655

RESUMO

Monoterpenoids offer potential as biocatalytically derived monomer feedstocks for high-performance renewable polymers. We describe a biocatalytic route to lactone monomers menthide and dihydrocarvide employing Baeyer-Villiger monooxygenases (BVMOs) from Pseudomonas sp. HI-70 (CPDMO) and Rhodococcus sp. Phi1 (CHMOPhi1) as an alternative to organic synthesis. The regioselectivity of dihydrocarvide isomer formation was controlled by site-directed mutagenesis of three key active site residues in CHMOPhi1. A combination of crystal structure determination, molecular dynamics simulations, and mechanistic modeling using density functional theory on a range of models provides insight into the origins of the discrimination of the wild type and a variant CHMOPhi1 for producing different regioisomers of the lactone product. Ring-opening polymerizations of the resultant lactones using mild metal-organic catalysts demonstrate their utility in polymer production. This semisynthetic approach utilizing a biocatalytic step, non-petroleum feedstocks, and mild polymerization catalysts allows access to known and also to previously unreported and potentially novel lactone monomers and polymers.


Assuntos
Proteínas de Bactérias/química , Lactonas/química , Oxigenases de Função Mista/química , Monoterpenos/química , Pseudomonas/enzimologia , Rhodococcus/enzimologia , Catálise
6.
J Nat Prod ; 81(7): 1546-1552, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29979593

RESUMO

A chemoenzymatic approach providing access to all four intermediates in the peppermint biosynthetic pathway between limonene and menthone/isomenthone, including noncommercially available intermediates (-)- trans-isopiperitenol (2), (-)-isopiperitenone (3), and (+)- cis-isopulegone (4), is described. Oxidation of (+)-isopulegol (13) followed by enolate selenation and oxidative elimination steps provides (-)-isopiperitenone (3). A chemical reduction and separation route from (3) provides both native (-)- trans-isopiperitenol (2) and isomer (-)- cis-isopiperitenol (18), while enzymatic conjugate reduction of (-)-isopiperitenone (3) with IPR [(-)-isopiperitenone reductase)] provides (+)- cis-isopulegone (4). This undergoes facile base-mediated chemical epimerization to (+)-pulegone (5), which is subsequently shown to be a substrate for NtDBR ( Nicotiana tabacum double-bond reductase) to afford (-)-menthone (7) and (+)-isomenthone (8).


Assuntos
Monoterpenos/síntese química , Óleos de Plantas/síntese química , Isomerismo , Mentha piperita
7.
Angew Chem Int Ed Engl ; 55(33): 9596-600, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27411040

RESUMO

Three enzymes of the Mentha essential oil biosynthetic pathway are highly homologous, namely the ketoreductases (-)-menthone:(-)-menthol reductase and (-)-menthone:(+)-neomenthol reductase, and the "ene" reductase isopiperitenone reductase. We identified a rare catalytic residue substitution in the last two, and performed comparative crystal structure analyses and residue-swapping mutagenesis to investigate whether this determines the reaction outcome. The result was a complete loss of native activity and a switch between ene reduction and ketoreduction. This suggests the importance of a catalytic glutamate vs. tyrosine residue in determining the outcome of the reduction of α,ß-unsaturated alkenes, due to the substrate occupying different binding conformations, and possibly also to the relative acidities of the two residues. This simple switch in mechanism by a single amino acid substitution could potentially generate a large number of de novo ene reductases.


Assuntos
Óleos Voláteis/metabolismo , Oxirredutases/metabolismo , Estrutura Molecular , Óleos Voláteis/química , Oxirredução
8.
Macromol Rapid Commun ; 35(9): 868-74, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24604676

RESUMO

Enzymes are attractive, "green" alternatives to chemical catalysts within the industrial sector, but their robustness to environmental conditions needs optimizing. Here, an enzyme is tagged chemically and recombinantly with a self-assembling peptide that allows the conjugate to spontaneously assemble with pure peptide to form ß-sheet-rich nanofibers decorated with tethered enzyme. Above a critical concentration, these fibers entangle and form a 3D hydrogel. The immobilized enzyme catalyzes chemical transformations and critically its stability is increased significantly where it retains activity after exposure to high temperatures (90 °C) and long storage times (up to 12 months).


Assuntos
Hidrogéis , Nanofibras , Peptídeos/química , Biocatálise , Biotransformação , Enzimas Imobilizadas/química , Reologia
9.
Microb Biotechnol ; 16(2): 307-321, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36353812

RESUMO

Halomonas bluephagenesis TD1.0 was engineered to produce the biofuel propane, bioplastic poly-3-hydroxybutyrate (PHB), and biochemicals mandelate and hydroxymandelate in a single, semi-continuous batch fermentation under non-sterile conditions. Multi-product separation was achieved by segregation of the headspace gas (propane), fermentation broth ([hydroxy]mandelate) and cellular biomass (PHB). Engineering was performed by incorporating the genes encoding fatty acid photodecarboxylase (CvFAP) and hydroxymandelic acid synthase (SyHMAS) into a H. bluephagenesis hmgCAB cassette knockout to channel flux towards (hydroxy)mandelate. Design of Experiment strategies were coupled with fermentation trials to simultaneously optimize each product. Propane and mandelate titres were the highest reported for H. bluephagenesis (62 g/gDCW and 71 ± 10 mg/L respectively) with PHB titres (69% g/gDCW) comparable to other published studies. This proof-of-concept achievement of four easily separated products within one fermentation is a novel achievement probing the versatility of biotechnology, further elevating H. bluephagenesis as a Next Generation Industrial Biotechnology (NGIB) chassis by producing highly valued products at a reduced cost.


Assuntos
Halomonas , Fermentação , Halomonas/genética , Halomonas/metabolismo , Biocombustíveis , Propano , Hidroxibutiratos , Poliésteres/metabolismo , Biopolímeros
10.
Bioinform Biol Insights ; 17: 11779322231171779, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37200674

RESUMO

Multi-omic data mining has the potential to revolutionize synthetic biology especially in non-model organisms that have not been extensively studied. However, tangible engineering direction from computational analysis remains elusive due to the interpretability of large datasets and the difficulty in analysis for non-experts. New omics data are generated faster than our ability to use and analyse results effectively, resulting in strain development that proceeds through classic methods of trial-and-error without insight into complex cell dynamics. Here we introduce a user-friendly, interactive website hosting multi-omics data. Importantly, this new platform allows non-experts to explore questions in an industrially important chassis whose cellular dynamics are still largely unknown. The web platform contains a complete KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis derived from principal components analysis, an interactive bio-cluster heatmap analysis of genes, and the Halomonas TD1.0 genome-scale metabolic (GEM) model. As a case study of the effectiveness of this platform, we applied unsupervised machine learning to determine key differences between Halomonas bluephagenesis TD1.0 cultivated under varied conditions. Specifically, cell motility and flagella apparatus are identified to drive energy expenditure usage at different osmolarities, and predictions were verified experimentally using microscopy and fluorescence labelled flagella staining. As more omics projects are completed, this landing page will facilitate exploration and targeted engineering efforts of the robust, industrial chassis H bluephagenesis for researchers without extensive bioinformatics background.

11.
Synth Biol (Oxf) ; 8(1): ysad010, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323510

RESUMO

Cannabinoids are a therapeutically valuable class of secondary metabolites with a vast number of substituents. The native cannabinoid biosynthetic pathway of Cannabis sativa generates cannabigerolic acid (CBGA), the common substrate to multiple cannabinoid synthases. The bioactive decarboxylated analog of this compound, cannabigerol (CBG), represents an alternate gateway into the cannabinoid space as a substrate either to non-canonical cannabinoid synthase homologs or to synthetic chemical reactions. Herein, we describe the identification and repurposing of aromatic prenyltransferase (AtaPT), which when coupled with native enzymes of C. sativa can form an Escherichia coli production system for CBGA in cell lysates and CBG in whole cells. Engineering of AtaPT, guided by structural analysis, was performed to enhance its kinetics toward CBGA production for subsequent use in a proof-of-concept lysate system. For the first time, we show a synthetic biology platform for CBG biosynthesis in E. coli cells by employing AtaPT under an optimized microbial system. Our results have therefore set the foundation for sustainable production of well-researched and rarer cannabinoids in an E. coli chassis. Graphical Abstract.

12.
Biotechnol Biofuels Bioprod ; 16(1): 152, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821908

RESUMO

BACKGROUND: Production of relatively low value, bulk commodity chemicals and fuels by microbial species requires a step-change in approach to decrease the capital and operational costs associated with scaled fermentation. The utilisation of the robust and halophilic industrial host organisms of the genus Halomonas could dramatically decrease biomanufacturing costs owing to their ability to grow in seawater, using waste biogenic feedstocks, under non-sterile conditions. RESULTS: We describe the isolation of Halomonas rowanensis, a novel facultative chemoautotrophic species of Halomonas from a natural brine spring. We investigated the ability of this species to produce ectoine, a compound of considerable industrial interest, under heterotrophic conditions. Fixation of radiolabelled NaH14CO3 by H. rowanensis was confirmed in mineral medium supplied with thiosulfate as an energy source. Genome sequencing suggested carbon fixation proceeds via a reductive tricarboxylic acid cycle, and not the Calvin-Bensen-Bassham cycle. The mechanism of energy generation to support chemoautotrophy is unknown owing to the absence of an annotated SOX-based thiosulfate-mediated energy conversion system. We investigated further the biotechnological potential of the isolated H. rowanensis by demonstrating production of the gaseous hydrocarbon (bio-propane), bioplastics (poly-3-hydroxybutyrate) and osmolytes (ectoine) under heterotrophic and autotrophic CO2 fixation growth conditions. CONCLUSIONS: This proof-of-concept study illustrates the value of recruiting environmental isolates as industrial hosts for chemicals biomanufacturing, where CO2 utilisation could replace, or augment, the use of biogenic feedstocks in non-sterile, industrialised bioreactors.

13.
Front Bioeng Biotechnol ; 10: 892896, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711639

RESUMO

A key challenge in chemicals biomanufacturing is the maintenance of stable, highly productive microbial strains to enable cost-effective fermentation at scale. A "cookie-cutter" approach to microbial engineering is often used to optimize host stability and productivity. This can involve identifying potential limitations in strain characteristics followed by attempts to systematically optimize production strains by targeted engineering. Such targeted approaches however do not always lead to the desired traits. Here, we demonstrate both 'hit and miss' outcomes of targeted approaches in attempts to generate a stable Escherichia coli strain for the bioproduction of the monoterpenoid linalool, a fragrance molecule of industrial interest. First, we stabilized linalool production strains by eliminating repetitive sequences responsible for excision of pathway components in plasmid constructs that encode the pathway for linalool production. These optimized pathway constructs were then integrated within the genome of E. coli in three parts to eliminate a need for antibiotics to maintain linalool production. Additional strategies were also employed including: reduction in cytotoxicity of linalool by adaptive laboratory evolution and modification or homologous gene replacement of key bottleneck enzymes GPPS/LinS. Our study highlights that a major factor influencing linalool titres in E. coli is the stability of the genetic construct against excision or similar recombination events. Other factors, such as decreasing linalool cytotoxicity and changing pathway genes, did not lead to improvements in the stability or titres obtained. With the objective of reducing fermentation costs at scale, the use of minimal base medium containing paper mill wastewater secondary paper fiber as sole carbon source was also investigated. This involved simultaneous saccharification and fermentation using either supplemental cellulase blends or by co-expressing secretable cellulases in E. coli containing the stabilized linalool production pathway. Combined, this study has demonstrated a stable method for linalool production using an abundant and low-cost feedstock and improved production strains, providing an important proof-of-concept for chemicals production from paper mill waste streams. For scaled production, optimization will be required, using more holistic approaches that involve further rounds of microbial engineering and fermentation process development.

14.
Chembiochem ; 12(5): 738-49, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21374779

RESUMO

We have conducted a site-specific saturation mutagenesis study of H181 and H184 of flavoprotein pentaerythritol tetranitrate reductase (PETN reductase) to probe the role of these residues in substrate binding and catalysis with a variety of α,ß-unsaturated alkenes. Single mutations at these residues were sufficient to dramatically increase the enantiopurity of products formed by reduction of 2-phenyl-1-nitropropene. In addition, many mutants exhibited a switch in reactivity to predominantly catalyse nitro reduction, as opposed to CC reduction. These mutants showed an enhancement in a minor side reaction and formed 2-phenylpropanal oxime from 2-phenyl-1-nitropropene. The multiple binding conformations of hydroxy substituted nitro-olefins in PETN reductase were examined by using both structural and catalytic techniques. These compounds were found to bind in both active and inhibitory complexes; this highlights the plasticity of the active site and the ability of the H181/H184 couple to coordinate with multiple functional groups. These properties demonstrate the potential to use PETN reductase as a scaffold in the development of industrially useful biocatalysts.


Assuntos
Enterobacter cloacae/enzimologia , Mutagênese Sítio-Dirigida , Oxirredutases/genética , Oxirredutases/metabolismo , Shewanella/enzimologia , Aldeídos/metabolismo , Alcenos/metabolismo , Cristalografia por Raios X , Enterobacter cloacae/química , Enterobacter cloacae/genética , Modelos Moleculares , Oxirredutases/química , Oximas/metabolismo , Fenóis/metabolismo , Ligação Proteica , Shewanella/química , Shewanella/genética , Estereoisomerismo , Especificidade por Substrato
15.
Microorganisms ; 9(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069865

RESUMO

The long road from emerging biotechnologies to commercial "green" biosynthetic routes for chemical production relies in part on efficient microbial use of sustainable and renewable waste biomass feedstocks. One solution is to apply the consolidated bioprocessing approach, whereby microorganisms convert lignocellulose waste into advanced fuels and other chemicals. As lignocellulose is a highly complex network of polymers, enzymatic degradation or "saccharification" requires a range of cellulolytic enzymes acting synergistically to release the abundant sugars contained within. Complications arise from the need for extracellular localisation of cellulolytic enzymes, whether they be free or cell-associated. This review highlights the current progress in the consolidated bioprocessing approach, whereby microbial chassis are engineered to grow on lignocellulose as sole carbon sources whilst generating commercially useful chemicals. Future perspectives in the emerging biofoundry approach with bacterial hosts are discussed, where solutions to existing bottlenecks could potentially be overcome though the application of high throughput and iterative Design-Build-Test-Learn methodologies. These rapid automated pathway building infrastructures could be adapted for addressing the challenges of increasing cellulolytic capabilities of microorganisms to commercially viable levels.

16.
Biotechnol Biofuels ; 14(1): 240, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34920731

RESUMO

Current industrial bioethanol production by yeast through fermentation generates carbon dioxide. Carbon neutral bioethanol production by cyanobacteria uses biological fixation (photosynthesis) of carbon dioxide or other waste inorganic carbon sources, whilst being sustainable and renewable. The first ethanologenic cyanobacterial process was developed over two decades ago using Synechococcus elongatus PCC 7942, by incorporating the recombinant pdc and adh genes from Zymomonas mobilis. Further engineering has increased bioethanol titres 24-fold, yet current levels are far below what is required for industrial application. At the heart of the problem is that the rate of carbon fixation cannot be drastically accelerated and carbon partitioning towards bioethanol production impacts on cell fitness. Key progress has been achieved by increasing the precursor pyruvate levels intracellularly, upregulating synthetic genes and knocking out pathways competing for pyruvate. Studies have shown that cyanobacteria accumulate high proportions of carbon reserves that are mobilised under specific environmental stresses or through pathway engineering to increase ethanol production. When used in conjunction with specific genetic knockouts, they supply significantly more carbon for ethanol production. This review will discuss the progress in generating ethanologenic cyanobacteria through chassis engineering, and exploring the impact of environmental stresses on increasing carbon flux towards ethanol production.

17.
Chembiochem ; 11(2): 197-207, 2010 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-19943268

RESUMO

We report the crystal structure of a thermophilic "ene" reductase (TOYE) isolated from Thermoanaerobacter pseudethanolicus E39. The crystal structure reveals a tetrameric enzyme and an active site that is relatively large compared to most other structurally determined and related Old Yellow Enzymes. The enzyme adopts higher order oligomeric states (octamers and dodecamers) in solution, as revealed by sedimentation velocity and multiangle laser light scattering. Bead modelling indicates that the solution structure is consistent with the basic tetrameric structure observed in crystallographic studies and electron microscopy. TOYE is stable at high temperatures (T(m)>70 degrees C) and shows increased resistance to denaturation in water-miscible organic solvents compared to the mesophilic Old Yellow Enzyme family member, pentaerythritol tetranitrate reductase. TOYE has typical ene-reductase properties of the Old Yellow Enzyme family. There is currently major interest in using Old Yellow Enzyme family members in the preparative biocatalysis of a number of activated alkenes. The increased stability of TOYE in organic solvents is advantageous for biotransformations in which water-miscible organic solvents and biphasic reaction conditions are required to both deliver novel substrates and minimize product racemisation.


Assuntos
NADPH Desidrogenase/metabolismo , Alcenos/química , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Cinética , NADPH Desidrogenase/antagonistas & inibidores , NADPH Desidrogenase/genética , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solventes/química , Estereoisomerismo , Especificidade por Substrato , Thermoanaerobacter/enzimologia
18.
Chembiochem ; 11(17): 2433-47, 2010 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-21064170

RESUMO

This work describes the development of an automated robotic platform for the rapid screening of enzyme variants generated from directed evolution studies of pentraerythritol tetranitrate (PETN) reductase, a target for industrial biocatalysis. By using a 96-well format, near pure enzyme was recovered and was suitable for high throughput kinetic assays; this enabled rapid screening for improved and new activities from libraries of enzyme variants. Initial characterisation of several single site-saturation libraries targeted at active site residues of PETN reductase, are described. Two mutants (T26S and W102F) were shown to have switched in substrate enantiopreference against substrates (E)-2-aryl-1-nitropropene and α-methyl-trans-cinnamaldehyde, respectively, with an increase in ee (62 % (R) for W102F). In addition, the detection of mutants with weak activity against α,ß-unsaturated carboxylic acid substrates showed progress in the expansion of the substrate range of PETN reductase. These methods can readily be adapted for rapid evolution of enzyme variants with other oxidoreductase enzymes.


Assuntos
Proteínas de Bactérias/genética , Evolução Molecular Direcionada/métodos , Oxirredutases/genética , Biblioteca de Peptídeos , Acroleína/análogos & derivados , Acroleína/química , Acroleína/metabolismo , Alcenos/química , Alcenos/metabolismo , Anaerobiose , Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biocatálise , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Enterobacter cloacae/enzimologia , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , NADP/química , NADP/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Estrutura Terciária de Proteína , Estereoisomerismo , Especificidade por Substrato
19.
Biochem J ; 417(1): 65-76, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18721129

RESUMO

Bacillus megaterium flavocytochrome P450 BM3 is a catalytically self-sufficient fatty acid hydroxylase formed by fusion of soluble NADPH-cytochrome P450 reductase and P450 domains. Selected mutations at residue 264 in the haem (P450) domain of the enzyme lead to novel amino acid sixth (distal) co-ordination ligands to the haem iron. The catalytic, spectroscopic and thermodynamic properties of the A264M, A264Q and A264C variants were determined in both the intact flavocytochromes and haem domains of P450 BM3. Crystal structures of the mutant haem domains demonstrate axial ligation of P450 haem iron by methionine and glutamine ligands trans to the cysteine thiolate, creating novel haem iron ligand sets in the A264M/Q variants. In contrast, the crystal structure of the A264C variant reveals no direct interaction between the introduced cysteine side chain and the haem, although EPR data indicate Cys(264) interactions with haem iron in solution. The A264M haem potential is elevated by comparison with wild-type haem domain, and substrate binding to the A264Q haem domain results in a approximately 360 mV increase in potential. All mutant haem domains occupy the conformation adopted by the substrate-bound form of wild-type BM3, despite the absence of added substrate. The A264M mutant (which has higher dodecanoate affinity than wild-type BM3) co-purifies with a structurally resolved lipid. These data demonstrate that a single mutation at Ala(264) is enough to perturb the conformational equilibrium between substrate-free and substrate-bound P450 BM3, and provide firm structural and spectroscopic data for novel haem iron ligand sets unprecedented in nature.


Assuntos
Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Heme/metabolismo , Mutação , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Dicroísmo Circular , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Espectroscopia de Ressonância de Spin Eletrônica , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Glutamina/química , Glutamina/genética , Glutamina/metabolismo , Heme/química , Cinética , Metionina/química , Metionina/genética , Metionina/metabolismo , Mutagênese Sítio-Dirigida , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/genética , Ligação Proteica , Termodinâmica
20.
Enzymes ; 47: 491-515, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32951833

RESUMO

Successful exploitation of biocatalytic processes employing flavoproteins requires the implementation of cost-effective solutions to circumvent the need to supply costly nicotinamide coenzymes as reducing equivalents. Chemical syntheses harnessing the power of the flavoprotein ene reductases will likely increase the range and/or optical purity of available fine chemicals and pharmaceuticals due to their ability to catalyze asymmetric bioreductions. This review will outline current progress in the design of alternative routes to ene reductase flavin activation, most notably within the Old Yellow Enzyme family. A variety of chemical, enzymatic, electrochemical and photocatalytic routes have been employed, designed to eliminate the need for nicotinamide coenzymes or provide cost-effective alternatives to efficient recycling. Photochemical approaches have also enabled novel mechanistic routes of ene reductases to become available, opening up the possibility of accessing a wider range of non-natural chemical diversity.


Assuntos
Coenzimas , Flavoproteínas , Oxirredutases , Biocatálise , Coenzimas/química , Flavoproteínas/química , Oxirredução , Oxirredutases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA