Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955876

RESUMO

We communicate the assembly of a solid, Ce-promoted Ni-based composite that was applied as catalyst for the hydrogenation of nitroarenes to afford the corresponding organic amines. The catalytically active material described herein was obtained through pyrolysis of a SiO2-pellet-supported bimetallic Ni-Ce complex that was readily synthesized prior to use from a MeO-functionalized salen congener, Ni(OAc)2·4 H2O, and Ce(NO3)3·6 H2O. Rewardingly, the requisite ligand for the pertinent solution phase precursor was accessible upon straightforward and time-saving imine condensation of ortho-vanillin with 1,3-diamino-2,2'-dimethylpropane. The introduced catalytic protocol is operationally simple in that the whole reaction set-up is quickly put together on the bench without the need of cumbersome handling in a glovebox or related containment systems. Moreover, the advantageous geometry and compact-sized nature of the used pellets renders the catalyst separation and recycling exceptionally easy.


Assuntos
Níquel , Dióxido de Silício , Aminas , Catálise , Hidrogenação
2.
European J Org Chem ; 2021(14): 2114-2120, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34248412

RESUMO

We report on the first cobalt corrole that effectively mediates the homogeneous hydrogenation of structurally diverse nitroarenes to afford the corresponding amines. The given catalyst is easily assembled prior to use from 4-tert-butylbenzaldehyde and pyrrole followed by metalation of the resulting corrole macrocycle with cobalt(II) acetate. The thus-prepared complex is self-contained in that the hydrogenation protocol is free from the requirement for adding any auxiliary reagent to elicit the catalytic activity of the applied metal complex. Moreover, a containment system is not required for the assembly of the hydrogenation reaction set-up as both the autoclave and the reaction vessels are readily charged under a regular laboratory atmosphere.

3.
J Org Chem ; 84(18): 11604-11611, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31454242

RESUMO

The given report introduces a simple and user-friendly in situ method for the production of catalytically active cobalt particles. The approach circumvents the use of air- and moisture-sensitive reductants as well as the application of anhydrous Co-precursor salts. Accordingly, the described catalytic system is readily assembled under open-flask conditions by simply combining the components in the reaction vessel. Therefore, the arduous charging procedure of the reaction autoclave in a glovebox under an inert gas atmosphere is no longer necessary. In fact, the catalytically active material is obtained upon treatment of readily available Co(OAc)2·4 H2O with benign commercial Zn powder. The catalytic performance of the resultant material was tested in the heterogeneous hydrogenation of nitriles to the corresponding primary amines. Both activity and selectivity of the cobalt catalyst are significantly enhanced if a triflate-based Lewis acid and ammonia is added to the reaction mixture.

4.
J Am Chem Soc ; 138(28): 8809-14, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27219853

RESUMO

Hydrogenations constitute fundamental processes in organic chemistry and allow for atom-efficient and clean functional group transformations. In fact, the selective reduction of nitriles, ketones, and aldehydes with molecular hydrogen permits access to a green synthesis of valuable amines and alcohols. Despite more than a century of developments in homogeneous and heterogeneous catalysis, efforts toward the creation of new useful and broadly applicable catalyst systems are ongoing. Recently, Earth-abundant metals have attracted significant interest in this area. In the present study, we describe for the first time specific molecular-defined manganese complexes that allow for the hydrogenation of various polar functional groups. Under optimal conditions, we achieve good functional group tolerance, and industrially important substrates, e.g., for the flavor and fragrance industry, are selectively reduced.

5.
J Am Chem Soc ; 138(28): 8781-8, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27320777

RESUMO

Novel heterogeneous cobalt-based catalysts have been prepared by pyrolysis of cobalt complexes with nitrogen ligands on different inorganic supports. The activity and selectivity of the resulting materials in the hydrogenation of nitriles and carbonyl compounds is strongly influenced by the modification of the support and the nitrogen-containing ligand. The optimal catalyst system ([Co(OAc)2/Phen@α-Al2O3]-800 = Cat. E) allows for efficient reduction of both aromatic and aliphatic nitriles including industrially relevant dinitriles to primary amines under mild conditions. The generality and practicability of this system is further demonstrated in the hydrogenation of diverse aliphatic, aromatic, and heterocyclic ketones as well as aldehydes, which are readily reduced to the corresponding alcohols.

6.
J Am Chem Soc ; 137(36): 11718-24, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26293483

RESUMO

Cobalt oxide/cobalt-based nanoparticles featuring a core-shell structure and nitrogen-doped graphene layers on alumina are obtained by pyrolysis of Co(OAc)2/phenanthroline. The resulting core-shell material (Co3O4-Co/NGr@α-Al2O3) was successfully applied in the catalytic hydrogenation of a variety of N-heteroarenes including quinolines, acridines, benzo[h], and 1,5-naphthyridine as well as unprotected indoles. The peculiar structure of the novel heterogeneous catalyst enables activation of molecular hydrogen at comparably low temperature. Both high activity and selectivity were achieved in these hydrogenation processes, to give important building blocks for bioactive compounds as well as the pharmaceutical industry.

7.
J Am Chem Soc ; 137(33): 10652-8, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26230874

RESUMO

An important goal for nanocatalysis is the development of flexible and efficient methods for preparing active and stable core-shell catalysts. In this respect, we present the synthesis and characterization of iron oxides surrounded by nitrogen-doped-graphene shells immobilized on carbon support (labeled FeOx@NGr-C). Active catalytic materials are obtained in a simple, scalable and two-step method via pyrolysis of iron acetate and phenanthroline and subsequent selective leaching. The optimized FeOx@NGr-C catalyst showed high activity in oxidative dehydrogenations of several N-heterocycles. The utility of this benign methodology is demonstrated by the synthesis of pharmaceutically relevant quinolines. In addition, mechanistic studies prove that the reaction progresses via superoxide radical anions (·O2(-)).

8.
Angew Chem Int Ed Engl ; 54(36): 10596-9, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26190772

RESUMO

The "green" reduction of carboxylic acids to alcohols is a challenging task in organic chemistry. Herein, we describe a general protocol for generation of alcohols by catalytic hydrogenation of carboxylic acids. Key to success is the use of a combination of Ru(acac)3, triphos and Lewis acids. The novel method showed broad substrate tolerance and a variety of aliphatic carboxylic acids including biomass-derived compounds can be smoothly reduced.

9.
Angew Chem Int Ed Engl ; 54(17): 5196-200, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25728921

RESUMO

Ethers are of fundamental importance in organic chemistry and they are an integral part of valuable flavors, fragrances, and numerous bioactive compounds. In general, the reduction of esters constitutes the most straightforward preparation of ethers. Unfortunately, this transformation requires large amounts of metal hydrides. Presented herein is a bifunctional catalyst system, consisting of Ru/phosphine complex and aluminum triflate, which allows selective synthesis of ethers by hydrogenation of esters or carboxylic acids. Different lactones were reduced in good yields to the desired products. Even challenging aromatic and aliphatic esters were reduced to the desired products. Notably, the in situ formed catalyst can be reused several times without any significant loss of activity.


Assuntos
Ácidos Carboxílicos/química , Éteres/química , Ácidos de Lewis/química , Rutênio/química , Catálise , Complexos de Coordenação/química , Ésteres , Éteres/síntese química , Hidrogenação , Mesilatos/química , Fosfinas/química
10.
Inorg Chem Commun ; 21(15): 147-150, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24851082

RESUMO

Synthesis and characterization of a novel type of ambident bridging ligands joining together the functional prerequisites for visible-light absorption, photoinduced electron transfer and catalytic proton reduction is presented. This class of compounds consists of a chromophoric 1,2-diimine-based π-acceptor site and a rigid polyaromatic dithiolate chelator. Due to the presence of a common conjugated linker moiety with an intrinsic two-electron redox reactivity and a suitable orbital coupling of the subunits, a favourable situation for vectorial multielectron transfer from attached electron donors to a catalytic acceptor site is provided. As an example for the application of this kind of bifunctional ligand systems, a [FeFe]-hydrogenase enzyme model compound is prepared and structurally characterized. Electrocatalytic hydrogen formation with this complex is demonstrated.

11.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 3): m272, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22412422

RESUMO

In the crystal structure of the title compound, [Ag(3)Cl(C(8)H(15)N(3))(6)]Cl(2), the Ag(I) ion, which is located on a twofold rotation axis, exists in a T-shape coordination environment. Two carbene C atoms of the N-heterocyclic carbene (NHC) ligands are bonded tightly forming a slightly bent [Ag(NHC)(2)](+) cation [C-Ag-C angle = 162.80 (18)°]. Three of these complex cations are further aggregated by one bridging chloride anion, which is lying on a threefold rotoinversion axis and is only loosely binding to the Ag(+) ions. The N atom of the amine group is not engaged in any coordinative bond.

13.
ChemSusChem ; 10(15): 3035-3039, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28650569

RESUMO

Development of catalytically active materials from biowaste represents an important aspect of sustainable chemical research. Three heterogeneous materials were synthesized from inexpensive biomass-based chitosan and abundant Co(OAc)2 using complexation followed by pyrolysis at various temperatures. These materials were applied in the catalytic hydrogenation of nitroarenes using molecular hydrogen. A variety of diversely functionalized nitroarenes including some pharmaceutically active compounds were converted into aromatic amines in high yields, with high selectivity, and with excellent functional group tolerance. This green protocol has also been implemented for the synthesis of a biologically important TRPC3 inhibitor.


Assuntos
Biomassa , Hidrocarbonetos Aromáticos/química , Nitrocompostos/química , Catálise , Hidrogenação
14.
Nat Commun ; 7: 11326, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27113087

RESUMO

Selective hydrogenations of (hetero)arenes represent essential processes in the chemical industry, especially for the production of polymer intermediates and a multitude of fine chemicals. Herein, we describe a new type of well-dispersed Ru nanoparticles supported on a nitrogen-doped carbon material obtained from ruthenium chloride and dicyanamide in a facile and scalable method. These novel catalysts are stable and display both excellent activity and selectivity in the hydrogenation of aromatic ethers, phenols as well as other functionalized substrates to the corresponding alicyclic reaction products. Furthermore, reduction of the aromatic core is preferred over hydrogenolysis of the C-O bond in the case of ether substrates. The selective hydrogenation of biomass-derived arenes, such as lignin building blocks, plays a pivotal role in the exploitation of novel sustainable feedstocks for chemical production and represents a notoriously difficult transformation up to now.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA