Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Macromol Rapid Commun ; 43(19): e2200150, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35770908

RESUMO

The response time of state-of-the-art humidity sensors is ≈8 s. A faster tracking of humidity change is especially required for health care devices. This research is focused on the direct nanostructuring of a humidity-sensitive polymer thin film and it is combined with an optical read-out method. The goal is to improve the response time by changing the surface-to-volume ratio of the thin film and to test a different measurement method compared to state-of-the-art sensors. Large and homogeneous nanostructured areas are fabricated by nanoimprint lithography on poly(2-hydroxyethyl methacrylate) thin films. Those thin films are made by initiated chemical vapor deposition (iCVD). To the author's knowledge, this is the first time nanoimprint lithography is applied on iCVD polymer thin films. With the imprinting process, a diffraction grating is developed in the visible wavelength regime. The optical and physicochemical behavior of the nanostructures is modeled with multi-physic simulations. After successful modeling and fabrication a first proof of concept shows that humidity dependency by using an optical detection of the first diffraction order peak is observable. The response time of the structured thin film results to be at least three times faster compared to commercial sensors.


Assuntos
Hidrogéis , Nanoestruturas , Umidade , Nanoestruturas/química , Polímeros/química
2.
Angew Chem Int Ed Engl ; 61(44): e202210326, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36070193

RESUMO

On-surface chemistry holds the potential for ultimate miniaturization of functional devices. Porphyrins are promising building-blocks in exploring advanced nanoarchitecture concepts. More stable molecular materials of practical interest with improved charge transfer properties can be achieved by covalently interconnecting molecular units. On-surface synthesis allows to construct extended covalent nanostructures at interfaces not conventionally available. Here, we address the synthesis and properties of covalent molecular network composed of interconnected constituents derived from halogenated nickel tetraphenylporphyrin on Au(111). We report that the π-extended two-dimensional material exhibits dispersive electronic features. Concomitantly, the functional Ni cores retain the same single-active site character of their single-molecule counterparts. This opens new pathways when exploiting the high robustness of transition metal cores provided by bottom-up constructed covalent nanomeshes.

3.
Anal Bioanal Chem ; 408(25): 7085-94, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27039202

RESUMO

Nanoelectrode arrays (NEAs) are increasingly applied for a variety of electroanalytical applications; however, very few studies dealt with the use of NEAs as an electrochemical generator of electrogenerated chemiluminescence (ECL). In the present study, arrays of nanodisc and nanoband electrodes with different dimensions and inter-electrode distances were fabricated by e-beam lithography on a polycarbonate layer deposited on boron-doped diamond (BDD) substrates. In particular, NEAs with 16 different geometries were fabricated on the same BDD sample substrate obtaining a multiple nanoelectrode and ultramicroelectrode array platform (MNEAP). After electrochemical and morphological characterization, the MNEAP was used to capture simultaneously with a single image the characteristic behaviour of ECL emission from all the 16 arrays. Experiments were performed using Ru(bpy)3 (2+) as the ECL luminophore and tri-n-propylamine (TPrA) as the co-reactant. With a relatively limited number of experiments, such an imaging procedure allowed to study the role that geometrical and mechanistic parameters play on ECL generation at NEAs. In particular, at high concentrations of TPrA, well-separated individual ECL spots or bands revealed an ECL signal which forms a pattern matching the nanofabricated structure. The analysis of the imaging data indicated that the thickness of the ECL-emitting zone at each nanoelectrode scales inversely with the co-reactant concentration, while significantly stronger ECL signals were detected for NEAs operating under overlap conditions.

4.
Anal Chem ; 87(7): 3670-7, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25785832

RESUMO

Maintaining the correct folding of cellular proteins is essential for preserving cellular homeostasis. Protein dishomeostasis, aberrant protein folding, and protein aggregation are indeed involved in several diseases including cancer, aging-associated, and neurodegenerative disorders. Accumulation of protein aggregates can also be induced from a variety of stressful conditions, such as temperature increase or oxidative stress. In this work, we monitored by Fourier transform-infrared (FT-IR) microspectroscopy the response of live breast cancer MCF-7 and mammary breast adenocarcinoma MDA-MB 231 cell lines to severe heat-shock (HS), caused by the rise of the cellular medium temperature from 37 ± 0.5 °C to 42 ± 0.5 °C. Through the study of the time-evolution of the second derivatives of the spectra and by the 2D correlation analysis of FT-IR absorbance data, we were able to identify a common sudden heat-shock response (HSR) among the two cell lines. The hyperfluidization of mammalian cell membranes, the transient increment of the signal lipids, as well as the alteration of proteome profile were all monitored within the first 40 min of stress application, while the persistent intracellular accumulation of extended ß-folded protein aggregates was detected after 40 min up to 2 h. As a whole, this paper offers a further prove of the diagnostic capabilities of FT-IR microspectroscopy for monitoring in real-time the biochemical rearrangements undergone by live cells upon external stimulation.


Assuntos
Resposta ao Choque Térmico , Agregados Proteicos , Desdobramento de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Linhagem Celular Tumoral , Feminino , Temperatura Alta , Humanos , Modelos Moleculares
5.
Opt Express ; 21 Suppl 2: A268-75, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-23482289

RESUMO

The surface of thin-film solar cells can be tailored with photonic nanostructures to allow light trapping in the absorbing medium. This in turn increases the optical thickness of the film and thus enhances their absorption. Such a coherent light trapping is generally accomplished with deterministic photonic architectures. Here, we experimentally explore the use of a different nanostructure, a disordered one, for this purpose. We show that the disorder-induced modes in the film allow improvements in the absorption over a broad range of frequencies and impinging angles.

6.
Biotechnol Bioeng ; 110(8): 2301-10, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23436578

RESUMO

The ability to control the differentiation of stem cells into specific neuronal types has a tremendous potential for the treatment of neurodegenerative diseases. In vitro neuronal differentiation can be guided by the interplay of biochemical and biophysical cues. Different strategies to increase the differentiation yield have been proposed, focusing everything on substrate topography, or, alternatively on substrate stiffness. Both strategies demonstrated an improvement of the cellular response. However it was often impossible to separate the topographical and the mechanical contributions. Here we investigate the role of the mechanical properties of nanostructured substrates, aiming at understanding the ultimate parameters which govern the stem cell differentiation. To this purpose a set of different substrates with controlled stiffness and with or without nanopatterning are used for stem cell differentiation. Our results show that the neuronal differentiation yield depends mainly on the substrate mechanical properties while the geometry plays a minor role. In particular nanostructured and flat polydimethylsiloxane (PDMS) substrates with comparable stiffness show the same neuronal yield. The improvement in the differentiation yield obtained through surface nanopatterning in the submicrometer scale could be explained as a consequence of a substrate softening effect. Finally we investigate by single cell force spectroscopy the neuronal precursor adhesion on the substrate immediately after seeding, as a possible critical step governing the neuronal differentiation efficiency. We observed that neuronal precursor adhesion depends on substrate stiffness but not on surface structure, and in particular it is higher on softer substrates. Our results suggest that cell-substrate adhesion forces and mechanical response are the key parameters to be considered for substrate design in neuronal regenerative medicine.


Assuntos
Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Nanoestruturas , Neurônios/fisiologia , Fenômenos Físicos , Células-Tronco/fisiologia
7.
Adv Sci (Weinh) ; 10(22): e2300223, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37199683

RESUMO

Molecule-based functional devices may take advantage of surface-mediated spin state bistability. Whereas different spin states in conventional spin crossover complexes are only accessible at temperatures well below room temperature, and the lifetimes of the high-spin state are relatively short, a different behavior exhibited by prototypical nickel phthalocyanine is shown here. Direct interaction of the organometallic complex with a copper metal electrode mediates the coexistence of a high spin and a low spin state within the 2D molecular array. The spin state bistability is extremely non-volatile, since no external stimuli are required to preserve it. It originates from the surface-induced axial displacement of the functional nickel cores, which generates two stable local minima. Spin state unlocking and the full conversion to the low spin state are only possible by a high temperature stimulus. This spin state transition is accompanied by distinct changes in the molecular electronic structure that might facilitate the state readout at room temperature, as evidenced by valence spectroscopy. The non-volatility of the high spin state up to elevated temperatures and the controllable spin bistability render the system extremely intriguing for applications in molecule-based information storage devices.

8.
Biotechnol Bioeng ; 108(11): 2736-46, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21656711

RESUMO

Embryonic stem (ES) cell differentiation in specific cell lineages is a major issue in cell biology particularly in regenerative medicine. Differentiation is usually achieved by using biochemical factors and it is not clear whether mechanical properties of the substrate over which cells are grown can affect proliferation and differentiation. Therefore, we produced patterns in polydimethylsiloxane (PDMS) consisting of groove and pillar arrays of sub-micrometric lateral resolution as substrates for cell cultures. We analyzed the effect of different nanostructures on differentiation of ES-derived neuronal precursors into neuronal lineage without adding biochemical factors. Neuronal precursors adhered on PDMS more effectively than on glass coverslips. We demonstrated that neuronal yield was enhanced by increasing pillars height from 35 to 400 nm. On higher pillar neuronal differentiation reaches ∼80% 96 h after plating and the largest differentiation enhancement of pillars over flat PDMS was observed during the first 6 h of culture. We conclude that PDMS nanopillars accelerate and increase neuronal differentiation.


Assuntos
Diferenciação Celular , Proliferação de Células , Células-Tronco Embrionárias/fisiologia , Nanoestruturas , Neurônios/fisiologia , Propriedades de Superfície , Animais , Técnicas de Cultura de Células/métodos , Dimetilpolisiloxanos , Camundongos
9.
Biosensors (Basel) ; 10(8)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764306

RESUMO

Electrochemical sensors are devices capable of detecting molecules and biomolecules in solutions and determining the concentration through direct electrical measurements. These systems can be miniaturized to a size less than 1 µm through the creation of small-size arrays of nanoelectrodes (NEA), offering advantages in terms of increased sensitivity and compactness. In this work, we present the fabrication of an electrochemical platform based on an array of nanoelectrodes (NEA) and its possible use for the detection of antigens of interest. NEAs were fabricated by forming arrays of nanoholes on a thin film of polycarbonate (PC) deposited on boron-doped diamond (BDD) macroelectrodes by thermal nanoimprint lithography (TNIL), which demonstrated to be a highly reliable and reproducible process. As proof of principle, gliadin protein fragments were physisorbed on the polycarbonate surface of NEAs and detected by immuno-indirect assay using a secondary antibody labelled with horseradish peroxidase (HRP). This method allows a successful detection of gliadin, in the range of concentration of 0.5-10 µg/mL, by cyclic voltammetry taking advantage from the properties of NEAs to strongly suppress the capacitive background signal. We demonstrate that the characteristics of the TNIL technology in the fabrication of high-resolution nanostructures together with their low-cost production, may allow to scale up the production of NEAs-based electrochemical sensing platform to monitor biochemical molecules for both food and biomedical applications.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos , Nanoestruturas , Nanotecnologia , Polímeros , Impressão
10.
Sci Rep ; 9(1): 15159, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31641160

RESUMO

Since their first appearance, organic-inorganic perovskite absorbers have been capturing the attention of the scientific community. While high efficiency devices highlight the importance of band level alignment, very little is known on the origin of the strong n-doping character observed in the perovskite. Here, by means of a highly accurate photoemission study, we shed light on the energy alignment in perovskite-based devices. Our results suggest that the interaction with the substrate may be the driver for the observed doping in the perovskite samples.

11.
Opt Express ; 16(26): 21608-15, 2008 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-19104592

RESUMO

We demonstrate a novel light trapping configuration based on an array of micro lenses in conjunction with a self aligned array of micro apertures located in a highly reflecting mirror. When locating the light trapping element, that displays strong directional asymmetric transmission, in front of thin film organic photovoltaic cells, an increase in cell absorption is obtained. By recycling reflected photons that otherwise would be lost, thinner films with more beneficial electrical properties can effectively be deployed. The light trapping element enhances the absorption rate of the solar cell and increases the photocurrent by as much as 25%.

12.
Materials (Basel) ; 9(3)2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-28773333

RESUMO

Site-controlled epitaxial growth of InAs quantum dots on GaAs substrates patterned with periodic nanohole arrays relies on the deterministic nucleation of dots into the holes. In the ideal situation, each hole should be occupied exactly by one single dot, with no nucleation onto planar areas. However, the single-dot occupancy per hole is often made difficult by the fact that lithographically-defined holes are generally much larger than the dots, thus providing several nucleation sites per hole. In addition, deposition of a thin GaAs buffer before the dots tends to further widen the holes in the [110] direction. We have explored a method of native surface oxide removal by using indium beams, which effectively prevents hole elongation along [110] and greatly helps single-dot occupancy per hole. Furthermore, as compared to Ga-assisted deoxidation, In-assisted deoxidation is efficient in completely removing surface contaminants, and any excess In can be easily re-desorbed thermally, thus leaving a clean, smooth GaAs surface. Low temperature photoluminescence showed that inhomogeneous broadening is substantially reduced for QDs grown on In-deoxidized patterns, with respect to planar self-assembled dots.

13.
Int J Nanomedicine ; 11: 4957-4973, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27757030

RESUMO

Although it is well recognized that cell-matrix interactions are based on both molecular and geometrical characteristics, the relationship between specific cell types and the three-dimensional morphology of the surface to which they are attached is poorly understood. This is particularly true for glomerular podocytes - the gatekeepers of glomerular filtration - which completely enwrap the glomerular basement membrane with their primary and secondary ramifications. Nanotechnologies produce biocompatible materials which offer the possibility to build substrates which differ only by topology in order to mimic the spatial organization of diverse basement membranes. With this in mind, we produced and utilized rough and porous surfaces obtained from silicon to analyze the behavior of two diverse ramified cells: glomerular podocytes and a neuronal cell line used as a control. Proper differentiation and development of ramifications of both cell types was largely influenced by topographical characteristics. Confirming previous data, the neuronal cell line acquired features of maturation on rough nanosurfaces. In contrast, podocytes developed and matured preferentially on nanoporous surfaces provided with grooves, as shown by the organization of the actin cytoskeleton stress fibers and the proper development of vinculin-positive focal adhesions. On the basis of these findings, we suggest that in vitro studies regarding podocyte attachment to the glomerular basement membrane should take into account the geometrical properties of the surface on which the tests are conducted because physiological cellular activity depends on the three-dimensional microenvironment.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular , Células Epiteliais/citologia , Glomérulos Renais/citologia , Nanoestruturas/química , Neuroblastoma/patologia , Podócitos/citologia , Citoesqueleto de Actina , Animais , Proliferação de Células , Células Cultivadas , Imunofluorescência , Adesões Focais/fisiologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Porosidade , Ratos Sprague-Dawley
14.
Biosens Bioelectron ; 55: 1-6, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24355458

RESUMO

This work focuses on the development of electrochemical impedance biosensors based on capacitance readout, for the detection of biomolecules in small sample volumes. We performed electrochemical impedance spectroscopy (EIS) measurements of DNA hybridization in electrochemical cells with microfabricated gold electrodes. The time stability of the device was tested in two different configurations: two microelectrodes in a microfluidic channel; two microelectrodes plus a reference electrode in an electrochemical cell. Our results demonstrate that the three-electrode setup is more stable, more reproducible, and suitable for real-time measurements. In the last part of the work we perform a test study of DNA hybridization in real time, and we show that the three-electrode configuration can measure the process in situ and in real time.


Assuntos
Técnicas Biossensoriais/instrumentação , DNA/química , DNA/genética , Espectroscopia Dielétrica/instrumentação , Eletrodos , Hibridização In Situ/instrumentação , DNA/análise , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Lab Chip ; 14(1): 210-8, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24195959

RESUMO

Here we present a new bonding protocol for SU-8 negative tone photoresist that exploits the chemical modifications induced in the resin by exposure to 254 nm (UVC) light. Fourier Transform Infrared microspectroscopy (µ-FTIR) was used to carry out a thorough study on the chemical processes and modifications occurring within the epoxy resin by exposure to 365 nm and 254 nm light. In particular, we established that UVC light promotes the opening of the epoxy rings bypassing the post-exposure bake. The possibility to promote a further activation of the resin, already patterned with standard UV lithography, was exploited to produce closed microfluidic devices. Specifically, we were able to fabricate fluidic chips, characterized by broadband transparency from mid-IR to UV and long term stability in continuous flow conditions. CaF2 was used as substrate, coated by sputtering with a nanometric silicon film, in order to make surface properties of this material more suitable for standard fabrication processes with respect to the original substrate. The fabricated microfluidic chips were used to study by µ-FTIR the biochemical response of live breast cancer MCF-7 cells to osmotic stress and their subsequent lysis induced by the injection of deionized water in the device. µ-FTIR analyses detected fast changes in protein, lipid and nucleic acid content as well as cytosol acidification.


Assuntos
Compostos de Epóxi/química , Técnicas Analíticas Microfluídicas/instrumentação , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Biomarcadores/metabolismo , Fluoreto de Cálcio/química , Humanos , Células MCF-7 , Técnicas Analíticas Microfluídicas/métodos , Pressão Osmótica , Silício/química , Raios Ultravioleta
16.
ACS Appl Mater Interfaces ; 6(10): 7633-42, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24724990

RESUMO

In this paper, we investigate conjugated polymer layers structured by nanoimprint lithography toward their suitability for the fabrication of nanostructured polymer/metal sulfide hybrid solar cells. Consequently, we first study the thermal stability of the nanoimprinted conjugated polymer layers by means of scanning electron microscopy and grazing incidence small-angle X-ray scattering, which reveals a reasonable thermal stability up to 145 °C and sufficient robustness against the solvent mixture used in the subsequent fabrication process. In the second part, we demonstrate the preparation of nanostructured polymer/copper indium sulfide hybrid solar cells via the infiltration and thermal decomposition of a mixture of copper and indium xanthates. Although this step needs temperatures of more than 160 °C, the nanostructures are retained in the final polymer/copper indium sulfide layers. The nanostructured solar cells show significantly improved power conversion efficiencies compared to similarly prepared flat bilayer devices, which is based on a distinct improvement of the short circuit current in the nanostructured solar cells.

17.
Nat Commun ; 4: 2966, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24352033

RESUMO

The exposed surface area of porous materials is usually determined by measuring the mass of adsorbed gas as a function of vapour pressure. Here we report a comprehensive study of adsorption in systems with closed bottom, not interconnected pores exhibiting different degrees of disorder, produced with methods encompassing nanolithography and dry and wet etching. Detailed adsorption studies of these matrices show hysteresis loops, as found always in pores having sizes of tens to hundreds of nanometres. The observed variations in the loop shape are associated with changes in the pore morphology. In regular pores formed by vertical and smooth walls, continuous adsorption is found for the first time in agreement with thermodynamic considerations valid for ideal pores. This suggests that irregularities in the walls and pore openings are the key factors behind the hysteresis phenomenon. Interestingly, pores having rough walls but a pyramidal shape also do not show any hysteresis.

18.
J Phys Condens Matter ; 25(19): 192101, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23611878

RESUMO

We consider capillary condensation in a deep groove of width L. The transition occurs at a pressure p(co)(L) described, for large widths, by the Kelvin equation p(sat) - p(co)(L) = 2σ cosθ/L, where θ is the contact angle at the side walls and σ is the surface tension. The order of the transition is determined by the contact angle of the capped end θcap; it is continuous if the liquid completely wets the cap, and first-order otherwise. When the transition is first-order, corner menisci at the bottom of the capillary lead to a pronounced metastability, determined by a complementary Kelvin equation Δp(L) = 2σ sinθcap/L. On approaching the wetting temperature of the capillary cap, the corner menisci merge and a single meniscus unbinds from the bottom of the groove. Finite-size scaling shifts, crossover behaviour and critical singularities are determined at mean-field level and beyond. Numerical and experimental results showing the continuous nature of condensation for θcap = 0 and the influence of corner menisci on adsorption isotherms are presented.


Assuntos
Ação Capilar , Modelos Químicos , Reologia/métodos , Soluções/química , Simulação por Computador , Transição de Fase , Molhabilidade
19.
PLoS One ; 8(9): e73966, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040128

RESUMO

Guidance molecules, such as Sema3A or Netrin-1, can induce growth cone (GC) repulsion or attraction in the presence of a flat surface, but very little is known of the action of guidance molecules in the presence of obstacles. Therefore we combined chemical and mechanical cues by applying a steady Netrin-1 stream to the GCs of dissociated hippocampal neurons plated on polydimethylsiloxane (PDMS) surfaces patterned with lines 2 µm wide, with 4 µm period and with a height varying from 100 to 600 nm. GC turning experiments performed 24 hours after plating showed that filopodia crawl over these lines within minutes. These filopodia do not show staining for the adhesion marker Paxillin. GCs and neurites crawl over lines 100 nm high, but less frequently and on a longer time scale over lines higher than 300 nm; neurites never crawl over lines 600 nm high. When neurons are grown for 3 days over patterned surfaces, also neurites can cross lines 300 nm and 600 nm high, grow parallel to and on top of these lines and express Paxillin. Axons - selectively stained with SMI 312 - do not differ from dendrites in their ability to cross these lines. Our results show that highly motile structures such as filopodia climb over high obstacle in response to chemical cues, but larger neuronal structures are less prompt and require hours or days to climb similar obstacles.


Assuntos
Cones de Crescimento/fisiologia , Hipocampo/fisiologia , Neuritos/fisiologia , Animais , Adesão Celular , Técnicas de Cultura de Células , Fatores de Crescimento Neural/metabolismo , Netrina-1 , Neurônios/fisiologia , Paxilina/metabolismo , Ratos , Tubulina (Proteína)/metabolismo , Proteínas Supressoras de Tumor/metabolismo
20.
Adv Mater ; 25(43): 6261-5, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23913661

RESUMO

A new spin-on alumina-based resist exhibits excellent performance in terms of both achievable lateral resolution and etch resistance in fluorine-based non-cryo-cooled dry etching processes. The resist has selectivity greater than 100:1 with respect to the underlying silicon during the etching process, patternability with various lithographic tools (UV, X-rays, electron beam, and nanoimprint lithography), and positive and negative tone behavior depending only on the developer chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA