Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Eur J Appl Physiol ; 121(8): 2107-2124, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33864493

RESUMO

Regular physical activity reduces the risk of several site-specific cancers in humans and suppresses tumour growth in animal models. The mechanisms through which exercise reduces tumour growth remain incompletely understood, but an intriguing and accumulating body of evidence suggests that the incubation of cancer cells with post-exercise serum can have powerful effects on key hallmarks of cancer cell behaviour in vitro. This suggests that exercise can impact tumour biology through direct changes in circulating proteins, RNA molecules and metabolites. Here, we provide a comprehensive narrative overview of what is known about the effects of exercise-conditioned sera on in vitro cancer cell behaviour. In doing so, we consider the key limitations of the current body of literature, both from the perspective of exercise physiology and cancer biology, and we discuss the potential in vivo physiological relevance of these findings. We propose key opportunities for future research in an area that has the potential to identify key anti-oncogenic protein targets and optimise physical activity recommendations for cancer prevention, treatment and survivorship.


Assuntos
Biomarcadores Tumorais/sangue , Exercício Físico/fisiologia , Neoplasias/sangue , Neoplasias/prevenção & controle , Humanos , Microambiente Tumoral
2.
Development ; 144(20): 3777-3788, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28870991

RESUMO

PTPRB is a transmembrane protein tyrosine phosphatase known to regulate blood vessel remodelling and angiogenesis. Here, we demonstrate that PTPRB negatively regulates branching morphogenesis in the mouse mammary epithelium. We show that Ptprb is highly expressed in adult mammary stem cells and also, although at lower levels, in oestrogen receptor-positive luminal cells. During mammary development, Ptprb expression is downregulated during puberty, a period of extensive ductal outgrowth and branching. In vivo shRNA knockdown of Ptprb in the cleared mammary fat pad transplant assay resulted in smaller epithelial outgrowths with an increased branching density and also increased branching in an in vitro organoid assay. Organoid branching was dependent on stimulation by FGF2, and Ptprb knockdown in mammary epithelial cells resulted in a higher level of fibroblast growth factor receptor (FGFR) activation and ERK1/2 phosphorylation, both at baseline and following FGF2 stimulation. Therefore, PTPRB regulates branching morphogenesis in the mammary epithelium by modulating the response of the FGFR signalling pathway to FGF stimulation. Considering the importance of branching morphogenesis in multiple taxa, our findings have general importance outside mammary developmental biology.


Assuntos
Fator 2 de Crescimento de Fibroblastos/farmacologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Morfogênese , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Animais , Padronização Corporal , Células Epiteliais/citologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Neovascularização Fisiológica , Análise de Sequência com Séries de Oligonucleotídeos , Organoides/crescimento & desenvolvimento , Fosforilação , RNA Interferente Pequeno/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Receptores de Estrogênio/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Transgenes
3.
Adv Exp Med Biol ; 1169: 119-140, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31487022

RESUMO

Adult female mammals are endowed with the unique ability to produce milk for nourishing their newborn offspring. Milk is secreted on demand by the mammary gland, an organ which develops during puberty, further matures during pregnancy and lactation, but reverts to a resting state after weaning. The glandular tissue (re)generated through this series of structural and functional changes is finely sourced by resident stem cells under the control of systemic hormones and local stimuli.Over the past decades a plethora of studies have been carried out in order to identify and characterize mammary stem cells, primarily in mice and humans. Intriguingly, it is now emerging that multiple mammary stem cell pools (co)exist and are characterized by distinctive molecular markers and context-dependent functions.This chapter reviews the heterogeneity of the mammary stem cell compartment with emphasis on the key properties and molecular regulators of distinct stem cell populations in both the mouse and human glands.


Assuntos
Glândulas Mamárias Animais , Glândulas Mamárias Humanas , Células-Tronco , Animais , Diferenciação Celular , Feminino , Humanos , Lactação , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Humanas/citologia , Gravidez , Células-Tronco/citologia
4.
J Mammary Gland Biol Neoplasia ; 20(1-2): 63-73, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26193872

RESUMO

The mammary epithelium is a highly heterogenous and dynamic tissue that includes a range of cell types with varying levels of proliferative capacity and differentiation potential, from stem to committed progenitor and mature cells. Generation of mature cells through expansion and specification of immature precursors is driven by hormonal and local stimuli. Intriguingly, although circulating hormones can be directly sensed only by a subset of mammary cells, they also regulate the behaviour of cells lacking their cognate receptors through paracrine mechanisms. Thus, mapping the hormonal signalling network on to the emerging mammary cell hierarchy appears to be a difficult task. Nevertheless, a first step towards a better understanding is the characterization of the hormone receptor expression pattern across individual cell types in the mammary epithelium. Here we review the most relevant findings on the cellular distribution of hormone receptors in the mammary gland, taking into account differences between mice and humans, the methods employed to assess receptor expression as well as the variety of approaches used to resolve the mammary cell heterogeneity.


Assuntos
Epitélio/metabolismo , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Humanas/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Epitélio/fisiologia , Feminino , Humanos , Glândulas Mamárias Animais/fisiologia , Glândulas Mamárias Humanas/fisiologia , Transdução de Sinais , Células-Tronco/fisiologia
5.
Stem Cells ; 32(3): 754-69, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24123662

RESUMO

Signals downstream of Akt can either favor or oppose stem cell (SC) maintenance, but how this dual role can be achieved is still undefined. Using human limbal keratinocyte stem cells (LKSCs), a SC type used in transplantation therapies for corneal regeneration, we show that Akt signaling is prominent in SC populations both in vivo and in vitro, and that Akt1 promotes while Akt2 opposes SC self-renewal. Noteworthy, loss of Akt2 signaling enhances LKSC maintenance ex vivo, whereas Akt1 depletion anticipates SC exhaustion. Mechanistically, the antagonistic functions of Akt1 and Akt2 in SC control are mainly dictated by their differential subcellular distribution, being nuclear Akt2 selectively implicated in FOXO inhibition. Akt2 downregulation favors LKSC maintenance as a result of a gain of FOXO functions, which attenuates the mechanistic target of rapamycin complex one signaling via tuberous sclerosis one gene induction, and promotes growth factor signaling through Akt1. Consistently, Akt2 deficiency also enhances limbal SCs in vivo. Thus, our findings reveal distinct roles for nuclear versus cytosolic Akt signaling in normal epithelial SC control and suggest that the selective Akt2 inhibition may provide novel pharmacological strategies for human LKSC expansion in therapeutic settings and mechanistic research.


Assuntos
Núcleo Celular/enzimologia , Fatores de Transcrição Forkhead/metabolismo , Queratinócitos/citologia , Complexos Multiproteicos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células-Tronco/citologia , Serina-Treonina Quinases TOR/metabolismo , Células 3T3 , Adulto , Animais , Proliferação de Células , Células Clonais , Ativação Enzimática , Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Humanos , Isoenzimas/metabolismo , Limbo da Córnea/citologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Fenótipo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteínas Repressoras/metabolismo , Transdução de Sinais , Células-Tronco/enzimologia , Transcrição Gênica
6.
J Pathol ; 234(2): 152-63, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24615293

RESUMO

Morgana/CHP-1 is a ubiquitously expressed protein able to inhibit ROCK II kinase activity. We have previously demonstrated that morgana haploinsufficiency leads to multiple centrosomes, genomic instability, and higher susceptibility to tumour development. While a large fraction of human cancers has shown morgana down-regulation, a small subset of tumours was shown to express high morgana levels. Here we demonstrate that high morgana expression in different breast cancer subtypes correlates with high tumour grade, mitosis number, and lymph node positivity. Moreover, morgana overexpression induces transformation in NIH-3T3 cells and strongly protects them from various apoptotic stimuli. From a mechanistic point of view, we demonstrate that morgana causes PTEN destabilization, by inhibiting ROCK activity, hence triggering the PI3K/AKT survival pathway. In turn, morgana down-regulation in breast cancer cells that express high morgana levels increases PTEN expression and leads to sensitization of cells to chemotherapy.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais/fisiologia , Quinases Associadas a rho/metabolismo , Animais , Neoplasias da Mama/patologia , Centrossomo/patologia , Regulação para Baixo/fisiologia , Feminino , Humanos , Camundongos , Chaperonas Moleculares , Fosfatidilinositol 3-Quinases/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-akt/metabolismo
7.
Breast Cancer Res ; 16(5): 443, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25606587

RESUMO

The members of the Cas protein family (p130Cas/BCAR1, Nedd9/HEF1, EFS and CASS4) are scaffold proteins required for the assembly of signal transduction complexes in response to several stimuli, such as growth factors, hormones and extracellular matrix components. Given their ability to integrate and coordinate multiple signalling events, Cas proteins have emerged as crucial players in the control of mammary cell proliferation, survival and differentiation. More importantly, it has been found that alterations of their expression levels result in aberrant signalling cascades, which promote initiation and progression of breast cancer. Based on the increasing data from in vitro, mouse model and clinical studies, in this review we will focus on two Cas proteins, p130Cas/BCAR1 and Nedd9, and their coupled signalling pathways, to examine their role in mammary cell transformation and in the acquirement of invasiveness and drug resistance of breast cancer cells.


Assuntos
Neoplasias da Mama/patologia , Proteína Substrato Associada a Crk/fisiologia , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Transformação Celular Neoplásica/metabolismo , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Glândulas Mamárias Humanas/patologia , Invasividade Neoplásica , Transdução de Sinais
8.
Stem Cells ; 31(7): 1422-33, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23592522

RESUMO

It has recently been proposed that defective differentiation of mammary luminal progenitors predisposes to basal-like breast cancer. However, the molecular and cellular mechanisms involved are still unclear. Here, we describe that the adaptor protein p130Cas is a crucial regulator of mouse mammary epithelial cell (MMEC) differentiation. Using a transgenic mouse model, we show that forced p130Cas overexpression in the luminal progenitor cell compartment results in the expansion of luminal cells, which aberrantly display basal cell features and reduced differentiation in response to lactogenic stimuli. Interestingly, MMECs overexpressing p130Cas exhibit hyperactivation of the tyrosine kinase receptor c-Kit. In addition, we demonstrate that the constitutive c-Kit activation alone mimics p130Cas overexpression, whereas c-Kit downregulation is sufficient to re-establish proper differentiation of p130Cas overexpressing cells. Overall, our data indicate that high levels of p130Cas, via abnormal c-Kit activation, promote mammary luminal cell plasticity, thus providing the conditions for the development of basal-like breast cancer. Consistently, p130Cas is overexpressed in human triple-negative breast cancer, further suggesting that p130Cas upregulation may be a priming event for the onset of basal-like breast cancer.


Assuntos
Proteína Substrato Associada a Crk/metabolismo , Glândulas Mamárias Animais/citologia , Neoplasias Mamárias Experimentais/patologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Animais , Diferenciação Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Células Cultivadas , Proteína Substrato Associada a Crk/biossíntese , Proteína Substrato Associada a Crk/genética , Feminino , Humanos , Imuno-Histoquímica , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Transgênicos , Gravidez , Proteínas Proto-Oncogênicas c-kit/genética , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
9.
Dis Model Mech ; 17(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38149669

RESUMO

LYN kinase is expressed in BRCA1 loss-of-function-dependent mouse mammary tumours, in the cells of origin of such tumours, and in human breast cancer. Suppressing LYN kinase activity in BRCA1-defective cell lines as well as in in vitro cultures of Brca1-null mouse mammary tumours is deleterious to their growth. Here, we examined the interaction between LYN kinase and BRCA1 loss-of-function in an in vivo mouse mammary tumour model, using conditional knockout Brca1 and Lyn alleles. Comparison of Brca1 tumour cohorts showed little difference in mammary tumour formation between animals that were wild type, heterozygous or homozygous for the conditional Lyn allele, although this was confounded by factors including incomplete Lyn recombination in some tumours. RNA-sequencing analysis demonstrated that tumours with high levels of Lyn gene expression had a slower doubling time, but this was not correlated with levels of LYN staining in tumour cells themselves. Rather, high Lyn expression and slower tumour growth were likely a result of B-cell infiltration. The multifaceted role of LYN indicates that it is likely to present difficulties as a therapeutic target in breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Animais , Feminino , Humanos , Camundongos , Proteína BRCA1/genética , Mama/patologia , Neoplasias da Mama/genética , Linhagem Celular , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Camundongos Knockout
10.
J Cell Sci ; 124(Pt 21): 3545-56, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22045731

RESUMO

E3 ubiquitin ligases give specificity to the ubiquitylation process by selectively binding substrates. Recently, their function has emerged as a crucial modulator of T-cell tolerance and immunity. However, substrates, partners and mechanism of action for most E3 ligases remain largely unknown. In this study, we identified the human T-cell co-receptor CD8 α-chain as binding partner of the ligand of Numb proteins X1 (LNX1p80 isoform) and X2 (LNX2). Both LNX mRNAs were found expressed in T cells purified from human blood, and both proteins interacted with CD8α in human HPB-ALL T cells. By using an in vitro assay and a heterologous expression system we showed that the interaction is mediated by the PDZ (PSD95-DlgA-ZO-1) domains of LNX proteins and the cytosolic C-terminal valine motif of CD8α. Moreover, CD8α redistributed LNX1 or LNX2 from the cytosol to the plasma membrane, whereas, remarkably, LNX1 or LNX2 promoted CD8α ubiquitylation, downregulation from the plasma membrane, transport to the lysosomes, and degradation. Our findings highlight the function of LNX proteins as E3 ligases and suggest a mechanism of regulation for CD8α localization at the plasma membrane by ubiquitylation and endocytosis.


Assuntos
Antígenos CD8/metabolismo , Proteínas de Transporte/metabolismo , Endocitose , Ubiquitina-Proteína Ligases/metabolismo , Antígenos CD8/química , Antígenos CD8/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Humanos , Domínios PDZ , Ligação Proteica , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
11.
Cancers (Basel) ; 15(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686600

RESUMO

A better understanding of the mechanisms generating tumour heterogeneity will allow better targeting of current therapies, identify potential resistance mechanisms and highlight new approaches for therapy. We have previously shown that in genetically modified mouse models carrying conditional oncogenic alleles, mammary tumour histotype varies depending on the combination of alleles, the cell type to which they are targeted and, in some cases, reproductive history. This suggests that tumour heterogeneity is not a purely stochastic process; rather, differential activation of signalling pathways leads to reproducible differences in tumour histotype. We propose the NOTCH signalling pathway as one such pathway. Here, we have crossed conditional knockout Notch1 or Notch2 alleles into an established mouse mammary tumour model. Notch1/2 deletion had no effect on tumour-specific survival; however, loss of Notch alleles resulted in a dose-dependent increase in metaplastic adenosquamous carcinomas (ASQCs). ASQCs and adenomyoepitheliomas (AMEs) also demonstrated a significant increase in AKT signalling independent of Notch status. Therefore, the NOTCH pathway is a suppressor of the ASQC phenotype, while increased PI3K/AKT signalling is associated with ASQC and AME tumours. We propose a model in which PI3K/AKT and NOTCH signalling act interact to determine mouse mammary tumour histotype.

12.
Breast Cancer Res ; 14(5): R137, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23098208

RESUMO

INTRODUCTION: Intrinsic plasticity of breast carcinoma cells allows them to undergo a transient and reversible conversion into mesenchymal cells to disseminate into distant organs, where they can re-differentiate to an epithelial-like status to form a cohesive secondary mass. The p130Cas scaffold protein is overexpressed in human ER+ and HER2+ breast cancer where it contributes to cancer progression, invasion and resistance to therapy. However, its role in regulating mesenchymal aggressive breast cancer cells remains to be determined. The aim of this study was to investigate the molecular and functional involvement of this adaptor protein in breast cancer cell plasticity. METHODS: We used silencing strategies and rescue experiments to evaluate phenotypic and biochemical changes from mesenchymal to epithelial traits in breast tumor cell lines. In the mouse A17 cell model previously related to mesenchymal cancer stem cells and basal-like breast cancer, we biochemically dissected the signaling pathways involved and performed functional in vivo tumor growth ability assays. The significance of the signaling platform was assessed in a human setting through the use of specific inhibitors in aggressive MDA-MB-231 subpopulation LM2-4175 cells. To evaluate the clinical relevance of the results, we analyzed publicly available microarray data from the Netherlands Cancer Institute and from the Koo Foundation Sun Yat-Sen Cancer Center. RESULTS: We show that p130Cas silencing induces loss of mesenchymal features, by downregulating Vimentin, Snail, Slug and Twist transcriptional factors, resulting in the acquirement of epithelial-like traits. Mechanistically, p130Cas controls Cyclooxygenase-2 transcriptional expression, which in turn contributes to p130Cas-dependent maintenance of mesenchymal phenotype. This cascade of events also compromises in vivo tumor growth through inhibition of cell signaling controlling cell cycle progression. c-Src and JNK kinases are sequential players in p130Cas/ Cyclooxygenase-2 axis and their pharmacological inhibition is sufficient to downregulate Cyclooxygenase-2 leading to an epithelial phenotype. Finally, in silico microarray data analysis indicates that p130Cas and Cyclooxygenase-2 concomitant overexpression predicts poor survival and high probability of breast tumor recurrence. CONCLUSIONS: Overall, these data identify a new p130Cas/Cyclooxygenase-2 axis as a crucial element in the control of breast tumor plasticity, opening new therapeutic strategies leading to inhibition of these pathways in aggressive breast carcinoma.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteína Substrato Associada a Crk/metabolismo , Ciclo-Oxigenase 2/metabolismo , Animais , Neoplasias da Mama/genética , Proteína Tirosina Quinase CSK , Linhagem Celular Tumoral , Proteína Substrato Associada a Crk/genética , Ciclo-Oxigenase 2/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Modelos Biológicos , Fenótipo , Característica Quantitativa Herdável , Quinases da Família src/metabolismo
13.
Elife ; 112022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36040316

RESUMO

The Wnt/ß-catenin signalling pathway regulates multiple cellular processes during development and many diseases, including cell proliferation, migration, and differentiation. Despite their hydrophobic nature, Wnt proteins exert their function over long distances to induce paracrine signalling. Recent studies have identified several factors involved in Wnt secretion; however, our understanding of how Wnt ligands are transported between cells to interact with their cognate receptors is still debated. Here, we demonstrate that gastric cancer cells utilise cytonemes to transport Wnt3 intercellularly to promote proliferation and cell survival. Furthermore, we identify the membrane-bound scaffolding protein Flotillin-2 (Flot2), frequently overexpressed in gastric cancer, as a modulator of these cytonemes. Together with the Wnt co-receptor and cytoneme initiator Ror2, Flot2 determines the number and length of Wnt3 cytonemes in gastric cancer. Finally, we show that Flotillins are also necessary for Wnt8a cytonemes during zebrafish embryogenesis, suggesting a conserved mechanism for Flotillin-mediated Wnt transport on cytonemes in development and disease.


Assuntos
Neoplasias Gástricas , Peixe-Zebra , Animais , Desenvolvimento Embrionário , Proteínas Wnt/fisiologia , Via de Sinalização Wnt
14.
J Clin Invest ; 132(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36074574

RESUMO

The basis of immune evasion, a hallmark of cancer, can differ even when cancers arise from one cell type such as in the human skin keratinocyte carcinomas: basal and squamous cell carcinoma. Here we showed that the basal cell carcinoma tumor-initiating cell surface protein CD200, through ectodomain shedding, was responsible for the near absence of NK cells within the basal cell carcinoma tumor microenvironment. In situ, CD200 underwent ectodomain shedding by metalloproteinases MMP3 and MMP11, which released biologically active soluble CD200 into the basal cell carcinoma microenvironment. CD200 bound its cognate receptor on NK cells to suppress MAPK pathway signaling that in turn blocked indirect (IFN-γ release) and direct cell killing. In addition, reduced ERK phosphorylation relinquished negative regulation of PPARγ-regulated gene transcription and led to membrane accumulation of the Fas/FADD death receptor and its ligand, FasL, which resulted in activation-induced apoptosis. Blocking CD200 inhibition of MAPK or PPARγ signaling restored NK cell survival and tumor cell killing, with relevance to many cancer types. Our results thus uncover a paradigm for CD200 as a potentially novel and targetable NK cell-specific immune checkpoint, which is responsible for NK cell-associated poor outcomes in many cancers.


Assuntos
Carcinoma Basocelular , Carcinoma de Células Escamosas , Humanos , Microambiente Tumoral , PPAR gama , Células Matadoras Naturais , Receptor fas , Apoptose , Carcinoma de Células Escamosas/genética
15.
FASEB J ; 24(10): 3796-808, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20505116

RESUMO

The ErbB2 oncogene is often overexpressed in breast tumors and associated with poor clinical outcome. p130Cas represents a nodal scaffold protein regulating cell survival, migration, and proliferation in normal and pathological cells. The functional role of p130Cas in ErbB2-dependent breast tumorigenesis was assessed by its silencing in breast cancer cells derived from mouse mammary tumors overexpressing ErbB2 (N202-1A cells), and by its reexpression in ErbB2-transformed p130Cas-null mouse embryonic fibroblasts. We demonstrate that p130Cas is necessary for ErbB2-dependent foci formation, anchorage-independent growth, and in vivo growth of orthotopic N202-1A tumors. Moreover, intranipple injection of p130Cas-stabilized siRNAs in the mammary gland of Balbc-NeuT mice decreases the growth of spontaneous tumors. In ErbB2-transformed cells, p130Cas is a crucial component of a functional molecular complex consisting of ErbB2, c-Src, and Fak. In human mammary cells, MCF10A.B2, the concomitant activation of ErbB2, and p130Cas overexpression sustain and strengthen signaling, leading to Rac1 activation and MMP9 secretion, thus providing invasive properties. Consistently, p130Cas drives N202-1A cell in vivo lung metastases colonization. These results demonstrate that p130Cas is an essential transducer in ErbB2 transformation and highlight its potential use as a novel therapeutic target in ErbB2 positive human breast cancers.


Assuntos
Transformação Celular Neoplásica , Proteína Substrato Associada a Crk/fisiologia , Genes erbB-2 , Neoplasias Mamárias Experimentais/patologia , Animais , Linhagem Celular Tumoral , Proteína Substrato Associada a Crk/genética , Feminino , Inativação Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , RNA Interferente Pequeno , Transdução de Sinais
16.
Glob Chall ; 5(7): 2000123, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34267927

RESUMO

Anticancer drug development is a crucial step toward cancer treatment, that requires realistic predictions of malignant tissue development and sophisticated drug delivery. Tumors often acquire drug resistance and drug efficacy, hence cannot be accurately predicted in 2D tumor cell cultures. On the other hand, 3D cultures, including multicellular tumor spheroids (MCTSs), mimic the in vivo cellular arrangement and provide robust platforms for drug testing when grown in hydrogels with characteristics similar to the living body. Microparticles and liposomes are considered smart drug delivery vehicles, are able to target cancerous tissue, and can release entrapped drugs on demand. Microfluidics serve as a high-throughput tool for reproducible, flexible, and automated production of droplet-based microscale constructs, tailored to the desired final application. In this review, it is described how natural hydrogels in combination with droplet microfluidics can generate MCTSs, and the use of microfluidics to produce tumor targeting microparticles and liposomes. One of the highlights of the review documents the use of the bottom-up construction methodologies of synthetic biology for the formation of artificial cellular assemblies, which may additionally incorporate both target cancer cells and prospective drug candidates, as an integrated "droplet incubator" drug assay platform.

17.
Cancers (Basel) ; 13(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34503160

RESUMO

Despite the significant advances in cancer research made in recent years, this disease remains one of the leading causes of death worldwide. In part, this is due to the fact that after therapy, a subpopulation of self-renewing tumor cells can survive and promote cancer relapse, resistance to therapies and metastasis. Targeting these cancer stem cells (CSCs) is therefore essential to improve the clinical outcome of cancer patients. In this sense, multi-targeted drugs may be promising agents targeting CSC-associated multifocal effects. We have previously constructed different human pancreatic ribonuclease (RNase) variants that are cytotoxic for tumor cells due to a non-classical nuclear localization signal introduced in their sequence. These cytotoxic RNases affect the expression of multiple genes involved in deregulated metabolic and signaling pathways in cancer cells and are highly cytotoxic for multidrug-resistant tumor cell lines. Here, we show that these cytotoxic nuclear-directed RNases are highly selective for tumor cell lines grown in 3D, inhibit CSCs' development and diminish the self-renewal capacity of the CSCs population. Moreover, these human RNase variants reduce the migration and invasiveness of highly invasive breast cancer cells and downregulate N-cadherin expression.

18.
Dis Model Mech ; 14(5)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34003256

RESUMO

Understanding the mechanisms underlying tumour heterogeneity is key to the development of treatments that can target specific tumour subtypes. We have previously targeted CRE recombinase-dependent conditional deletion of the tumour suppressor genes Brca1, Brca2, p53 (also known as Trp53) and/or Pten to basal or luminal oestrogen receptor-negative (ER-) cells of the mouse mammary epithelium. We demonstrated that both the cell-of-origin and the tumour-initiating genetic lesions cooperate to influence mammary tumour phenotype. Here, we use a CRE-activated HER2 orthologue to specifically target HER2/ERBB2 oncogenic activity to basal or luminal ER- mammary epithelial cells and perform a detailed analysis of the tumours that develop. We find that, in contrast to our previous studies, basal epithelial cells are less sensitive to transformation by the activated NeuKI allele, with mammary epithelial tumour formation largely confined to luminal ER- cells. Histologically, most tumours that developed were classified as either adenocarcinomas of no special type or as metaplastic adenosquamous tumours. The former were typically characterized by amplification of the NeuNT/Erbb2 locus; in contrast, tumours displaying squamous metaplasia were enriched in animals that had been through at least one pregnancy and typically had lower levels of NeuNT/Erbb2 locus amplification but had activated canonical WNT signalling. Squamous changes in these tumours were associated with activation of the epidermal differentiation cluster. Thus, in this model of HER2 breast cancer, cell-of-origin, reproductive history, NeuNT/Erbb2 locus amplification and the activation of specific branches of the WNT signalling pathway all interact to drive inter-tumour heterogeneity.


Assuntos
Amplificação de Genes , Loci Gênicos , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Receptor ErbB-2/genética , Reprodução/fisiologia , Via de Sinalização Wnt/genética , Alelos , Animais , Carcinogênese/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Modelos Animais de Doenças , Epitélio/patologia , Feminino , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Integrases/metabolismo , Estimativa de Kaplan-Meier , Glândulas Mamárias Animais/patologia , Metaplasia , Camundongos Transgênicos , Fenótipo
19.
Adv Exp Med Biol ; 674: 43-54, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20549939

RESUMO

Integrin signaling has a critical function in organizing cells in tissues during both embryonic development and tissue repair. Following their binding to the extracellular ligands, the intracellular signaling pathways triggered by integrins are directed to two major functions: organization of the actin cytoskeleton and regulation of cell behaviour including survival, differentiation and growth. Basic research conducted in the past twelve years has lead to remarkable breakthroughs in this field. Integrins are catalytically inactive and translate positional cues into biochemical signals by direct and/or functional association with intracellular adaptors, cytosolic tyrosine kinases or growth factor and cytokine receptors. The purpose of this chapter is to highlight recent experimental and conceptual advances in integrin signaling with particular emphasis on the ability of integrins to regulate Fak/Src family kinases (SFKs) activation and the cross-talk with soluble growth factors receptors and cytokines.


Assuntos
Integrinas/metabolismo , Transdução de Sinais/fisiologia , Actinas/metabolismo , Animais , Diferenciação Celular/fisiologia , Sobrevivência Celular/fisiologia , Citoesqueleto/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Receptores de Citocinas/metabolismo , Quinases da Família src/metabolismo
20.
Carbohydr Polym ; 245: 116504, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32718615

RESUMO

Developing drug delivery systems that release anticancer drugs in a controlled and sustained manner remains challenging. We hypothesized that highly sulfated heparin-based microcarriers would allow electrostatic drug binding and controlled release. In silico modelling showed that the anticancer drug doxorubicin has affinity for the heparin component of the microcarriers. Experimental results showed that the strong electrostatic interaction was reversible, allowing both doxorubicin loading and a subsequent slow release over 42 days without an initial burst release. The drug-loaded microcarriers were able to reduce cancer cell viability in vitro in both hormone-dependent and highly aggressive triple-negative human breast cancer cells. Focal drug treatment, of an in vivo orthotopic triple-negative breast cancer model significantly decreased tumor burden and reduced cancer metastasis, whereas systemic administration of an equivalent drug dose was ineffective. This study proves that heparin-based microcarriers can be used as drug delivery platforms, for focal delivery and sustained long-term drug release.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Criogéis/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Heparina/administração & dosagem , Animais , Antibióticos Antineoplásicos/química , Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Criogéis/química , Doxorrubicina/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Feminino , Heparina/química , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Simulação de Dinâmica Molecular , Metástase Neoplásica/tratamento farmacológico , Eletricidade Estática , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA