Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Haematologica ; 109(1): 231-244, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37439377

RESUMO

DIS3 gene mutations occur in approximately 10% of patients with multiple myeloma (MM); furthermore, DIS3 expression can be affected by monosomy 13 and del(13q), found in roughly 40% of MM cases. Despite the high incidence of DIS3 mutations and deletions, the biological significance of DIS3 and its contribution to MM pathogenesis remain poorly understood. In this study we investigated the functional role of DIS3 in MM, by exploiting a loss-of-function approach in human MM cell lines. We found that DIS3 knockdown inhibits proliferation in MM cell lines and largely affects cell cycle progression of MM plasma cells, ultimately inducing a significant increase in the percentage of cells in the G0/G1 phase and a decrease in the S and G2/M phases. DIS3 plays an important role not only in the control of the MM plasma cell cycle, but also in the centrosome duplication cycle, which are strictly co-regulated in physiological conditions in the G1 phase. Indeed, DIS3 silencing leads to the formation of supernumerary centrosomes accompanied by the assembly of multipolar spindles during mitosis. In MM, centrosome amplification is present in about a third of patients and may represent a mechanism leading to genomic instability. These findings strongly prompt further studies investigating the relevance of DIS3 in the centrosome duplication process. Indeed, a combination of DIS3 defects and deficient spindle-assembly checkpoint can allow cells to progress through the cell cycle without proper chromosome segregation, generating aneuploid cells which ultimately lead to the development of MM.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/patologia , Centrossomo/metabolismo , Centrossomo/patologia , Mitose , Ciclo Celular/genética , Instabilidade Genômica , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo
2.
Haematologica ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38988264

RESUMO

Multiple myeloma (MM) is a dreadful disease, marked by the uncontrolled proliferation of clonal plasma cells (PCs) within the bone marrow (BM). MM is characterized by a highly heterogeneous clinical and molecular background, supported by severe genomic alterations. Important deregulation of long non-coding RNAs (lncRNAs) expression has been reported in MM patients, influencing progression and therapy resistance. NEAT1 is a lncRNA essential for nuclear paraspeckles and involved in gene expression regulation. We showed that NEAT1 supports MM proliferation making this lncRNA an attractive therapeutic candidate. Here, we used a combinatorial strategy integrating transcriptomic and computational approaches with functional high-throughput drug screening, to identify compounds that synergize with NEAT1 inhibition in restraining MM cells growth. AUKA inhibitors were identified as top-scoring drugs in these analyses. We showed that the combination of NEAT1 silencing and AURKA inhibitors in MM profoundly impairs microtubule organization and mitotic spindle assembly, finally leading to cell death. Analysis of the large publicly CoMMpass dataset showed that in MM patients AURKA expression is strongly associated with reduced progression-free (p < 0.0001) and overall survival probability (p < 0.0001) and patients displaying high expression levels of both NEAT1 and AURKA have a worse clinical outcome. Finally, using RNA-sequencing data from NEAT1 knockdown (KD) MM cells, we identified the AURKA allosteric regulator TPX2 as a new NEAT1 target in MM and as a mediator of the interplay between AURKA and NEAT1, therefore providing a possible explanation of the synergistic activity observed upon their combinatorial inhibition.

3.
Brain ; 146(6): 2227-2240, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36729638

RESUMO

Neurodegenerative diseases are a major global health burden particularly with the increasing ageing population. Hereditary predisposition and environmental risk factors contribute to the heterogeneity of existing pathological phenotypes. Traditional clinical interventions focused on the use of small drugs have often led to failures due to the difficulties in crossing the blood-brain barrier and reaching the brain. In this regard, nanosystems can specifically deliver drugs and improve their bioavailability, overcoming some of the major challenges in neurodegenerative disease treatment. This review focuses on the use of nanosystems as an encouraging therapeutic approach targeting molecular pathways involved in localized and systematic neurodegenerative diseases. Among the latter, Friedreich's ataxia is an untreatable complex multisystemic disorder and the most widespread type of ataxia; it represents a test case to validate the clinical potential of therapeutic strategies based on nanoparticles with pleiotropic effects.


Assuntos
Ataxia de Friedreich , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Ataxia de Friedreich/tratamento farmacológico , Fenótipo
4.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38203802

RESUMO

Mounting evidence underscores the intricate interplay between the immune system and skeletal muscles in Duchenne muscular dystrophy (DMD), as well as during regular muscle regeneration. While immune cell infiltration into skeletal muscles stands out as a prominent feature in the disease pathophysiology, a myriad of secondary defects involving metabolic and inflammatory pathways persist, with the key players yet to be fully elucidated. Steroids, currently the sole effective therapy for delaying onset and symptom control, come with adverse side effects, limiting their widespread use. Preliminary evidence spotlighting the distinctive features of T cell profiling in DMD prompts the immuno-characterization of circulating cells. A molecular analysis of their transcriptome and secretome holds the promise of identifying a subpopulation of cells suitable as disease biomarkers. Furthermore, it provides a gateway to unraveling new pathological pathways and pinpointing potential therapeutic targets. Simultaneously, the last decade has witnessed the emergence of novel approaches. The development and equilibrium of both innate and adaptive immune systems are intricately linked to the gut microbiota. Modulating microbiota-derived metabolites could potentially exacerbate muscle damage through immune system activation. Concurrently, genome sequencing has conferred clinical utility for rare disease diagnosis since innovative methodologies have been deployed to interpret the functional consequences of genomic variations. Despite numerous genes falling short as clinical targets for MD, the exploration of Tdark genes holds promise for unearthing novel and uncharted therapeutic insights. In the quest to expedite the translation of fundamental knowledge into clinical applications, the identification of novel biomarkers and disease targets is paramount. This initiative not only advances our understanding but also paves the way for the design of innovative therapeutic strategies, contributing to enhanced care for individuals grappling with these incapacitating diseases.


Assuntos
Pesquisa Biomédica , Microbioma Gastrointestinal , Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Músculo Esquelético , Mapeamento Cromossômico
5.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891777

RESUMO

The gut microbiota plays a pivotal role in maintaining the dynamic balance of intestinal epithelial and immune cells, crucial for overall organ homeostasis. Dysfunctions in these intricate relationships can lead to inflammation and contribute to the pathogenesis of various diseases. Recent findings uncovered the existence of a gut-muscle axis, revealing how alterations in the gut microbiota can disrupt regulatory mechanisms in muscular and adipose tissues, triggering immune-mediated inflammation. In the context of Duchenne muscular dystrophy (DMD), alterations in intestinal permeability stand as a potential origin of molecules that could trigger muscle degeneration via various pathways. Metabolites produced by gut bacteria, or fragments of bacteria themselves, may have the ability to migrate from the gut into the bloodstream and ultimately infiltrate distant muscle tissues, exacerbating localized pathologies. These insights highlight alternative pathological pathways in DMD beyond the musculoskeletal system, paving the way for nutraceutical supplementation as a potential adjuvant therapy. Understanding the complex interplay between the gut microbiota, immune system, and muscular health offers new perspectives for therapeutic interventions beyond conventional approaches to efficiently counteract the multifaceted nature of DMD.


Assuntos
Microbioma Gastrointestinal , Músculo Esquelético , Distrofia Muscular de Duchenne , Distrofia Muscular de Duchenne/microbiologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Humanos , Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/microbiologia
6.
Haematologica ; 108(1): 219-233, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36073514

RESUMO

Long non-coding RNA NEAT1 is the core structural component of the nuclear paraspeckle (PS) organelles and it has been found to be deregulated in multiple myeloma (MM) patients. Experimental evidence indicated that NEAT1 silencing negatively impacts proliferation and viability of MM cells, both in vitro and in vivo, suggesting a role in DNA damage repair (DDR). In order to elucidate the biological and molecular relevance of NEAT1 upregulation in MM disease we exploited the CRISPR/Cas9 synergistic activation mediator genome editing system to engineer the AMO-1 MM cell line and generate two clones that para-physiologically transactivate NEAT1 at different levels. NEAT1 overexpression is associated with oncogenic and prosurvival advantages in MM cells exposed to nutrient starvation or a hypoxic microenvironment, which are stressful conditions often associated with more aggressive disease phases. Furthermore, we highlighted the NEAT1 involvement in virtually all DDR processes through, at least, two different mechanisms. On one side NEAT1 positively regulates the posttranslational stabilization of essential PS proteins, which are involved in almost all DDR systems, thus increasing their availability within cells. On the other hand, NEAT1 plays a crucial role as a major regulator of a molecular axis that includes ATM and the catalytic subunit of DNA-PK kinase proteins, and their direct targets pRPA32 and pCHK2. Overall, we provided novel important insightsthe role of NEAT1 in supporting MM cells adaptation to stressful conditions by improving the maintenance of DNA integrity. Taken together, our results suggest that NEAT1, and probably PS organelles, could represent a potential therapeutic target for MM treatment.


Assuntos
MicroRNAs , Mieloma Múltiplo , RNA Longo não Codificante , Humanos , Linhagem Celular Tumoral , Reparo do DNA , MicroRNAs/genética , Mieloma Múltiplo/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ativação Transcricional , Microambiente Tumoral , Regulação para Cima
7.
Cell Mol Life Sci ; 79(5): 259, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35474498

RESUMO

Delayed wound healing and chronic skin lesions represent a major health problem. Over the past years, growth factors mediated by platelet-rich plasma (PRP) and cell-based therapies were developed as effective and affordable treatment able to improve wound healing capacity. We have advanced existing concepts to develop a highly efficient high-throughput protocol with proven application for the isolation of PRP and pro-angiogenic cells (AngioPRP). This protocol outlines the effectiveness of AngioPRP in promoting the critical healing process including wound closure, re-epithelialization, granulation tissue growth, and blood vessel regeneration. We coupled this effect with normalization of mechanical properties of rescued mouse wounds, which is sustained by a correct arrangement of elastin and collagen fibers. Proteomic analysis of treated wounds demonstrated a fingerprint of AngioPRP based on the up-regulation of detoxification pathway of glutathione metabolism, correlated to a decrease in inflammatory response. Overall, these results have enabled us to provide a framework for how AngioPRP supports wound healing, opening avenues for further clinical advances.


Assuntos
Plaquetas , Plasma Rico em Plaquetas , Animais , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Plasma Rico em Plaquetas/metabolismo , Proteômica , Cicatrização/fisiologia
8.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36498987

RESUMO

Muscle wasting is a major pathological feature observed in Duchenne muscular dystrophy (DMD) and is the result of the concerted effects of inflammation, oxidative stress and cell senescence. The inducible form of proteasome, or immunoproteasome (IP), is involved in all the above mentioned processes, regulating antigen presentation, cytokine production and immune cell response. IP inhibition has been previously shown to dampen the altered molecular, histological and functional features of 3-month-old mdx mice, the animal model for DMD. In this study, we described the role of ONX-0914, a selective inhibitor of the PSMB8 subunit of immunoproteasome, in ameliorating the pathological traits that could promote muscle wasting progression in older, 9-month-old mdx mice. ONX-0914 reduces the number of macrophages and effector memory T cells in muscle and spleen, while increasing the number of regulatory T cells. It modulates inflammatory markers both in skeletal and cardiac muscle, possibly counteracting heart remodeling and hypertrophy. Moreover, it buffers oxidative stress by improving mitochondrial efficiency. These changes ultimately lead to a marked decrease of fibrosis and, potentially, to more controlled myofiber degeneration/regeneration cycles. Therefore, ONX-0914 is a promising molecule that may slow down muscle mass loss, with relatively low side effects, in dystrophic patients with moderate to advanced disease.


Assuntos
Músculo Esquelético , Distrofia Muscular de Duchenne , Camundongos , Animais , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Miocárdio/metabolismo , Macrófagos/metabolismo , Modelos Animais de Doenças
9.
Molecules ; 26(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652646

RESUMO

Urine proteomic applications in children suggested their potential in discriminating between healthy subjects from those with respiratory diseases. The aim of the current study was to combine protein fractionation, by urinary extracellular vesicle isolation, and proteomics analysis in order to establish whether different patterns of respiratory impedance in healthy preschoolers can be characterized from a protein fingerprint. Twenty-one 3-5-yr-old healthy children, representative of 66 recruited subjects, were selected: 12 late preterm (LP) and 9 full-term (T) born. Children underwent measurement of respiratory impedance through Forced Oscillation Technique (FOT) and no significant differences between LP and T were found. Unbiased clustering, based on proteomic signatures, stratified three groups of children (A, B, C) with significantly different patterns of respiratory impedance, which was slightly worse in group A than in groups B and C. Six proteins (Tripeptidyl peptidase I (TPP1), Cubilin (CUBN), SerpinA4, SerpinF1, Thy-1 membrane glycoprotein (THY1) and Angiopoietin-related protein 2 (ANGPTL2)) were identified in order to type the membership of subjects to the three groups. The differential levels of the six proteins in groups A, B and C suggest that proteomic-based profiles of urinary fractionated exosomes could represent a link between respiratory impedance and underlying biological profiles in healthy preschool children.


Assuntos
Vesículas Extracelulares/genética , Proteoma/genética , Proteômica , Urina/química , Aminopeptidases/urina , Proteína 2 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/urina , Pré-Escolar , Dipeptidil Peptidases e Tripeptidil Peptidases/urina , Impedância Elétrica , Proteínas do Olho/urina , Feminino , Humanos , Masculino , Fatores de Crescimento Neural/urina , Proteoma/química , Receptores de Superfície Celular/genética , Testes de Função Respiratória , Serina Proteases/urina , Serpinas/urina , Antígenos Thy-1/urina , Tripeptidil-Peptidase 1
10.
Am J Pathol ; 189(2): 339-353, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30448404

RESUMO

Patients affected by Duchenne muscular dystrophy (DMD) develop a progressive dilated cardiomyopathy characterized by inflammatory cell infiltration, necrosis, and cardiac fibrosis. Standard treatments consider the use of ß-blockers and angiotensin-converting enzyme inhibitors that are symptomatic and unspecific toward DMD disease. Medications that target DMD cardiac fibrosis are in the early stages of development. We found immunoproteasome dysregulation in affected hearts of mdx mice (murine animal model of DMD) and cardiomyocytes derived from induced pluripotent stem cells of patients with DMD. Interestingly, immunoproteasome inhibition ameliorated cardiomyopathy in mdx mice and reduced the development of cardiac fibrosis. Establishing the immunoproteasome inhibition-dependent cardioprotective role suggests the possibility of modulating the immunoproteasome as new and clinically relevant treatment to rescue dilated cardiomyopathy in patients with DMD.


Assuntos
Cardiomiopatias , Distrofia Muscular de Duchenne , Miócitos Cardíacos , Complexo de Endopeptidases do Proteassoma/imunologia , Animais , Cardiomiopatias/imunologia , Cardiomiopatias/patologia , Fibrose , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/imunologia , Distrofia Muscular de Duchenne/patologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/patologia
11.
Hum Mol Genet ; 26(19): 3682-3698, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28666318

RESUMO

α-Dystroglycanopathies are a group of muscular dystrophies characterized by α-DG hypoglycosylation and reduced extracellular ligand-binding affinity. Among other genes involved in the α-DG glycosylation process, fukutin related protein (FKRP) gene mutations generate a wide range of pathologies from mild limb girdle muscular dystrophy 2I (LGMD2I), severe congenital muscular dystrophy 1C (MDC1C), to Walker-Warburg Syndrome and Muscle-Eye-Brain disease. FKRP gene encodes for a glycosyltransferase that in vivo transfers a ribitol phosphate group from a CDP -ribitol present in muscles to α-DG, while in vitro it can be secreted as monomer of 60kDa. Consistently, new evidences reported glycosyltransferases in the blood, freely circulating or wrapped within vesicles. Although the physiological function of blood stream glycosyltransferases remains unclear, they are likely released from blood borne or distant cells. Thus, we hypothesized that freely or wrapped FKRP might circulate as an extracellular glycosyltransferase, able to exert a "glycan remodelling" process, even at distal compartments. Interestingly, we firstly demonstrated a successful transduction of MDC1C blood-derived CD133+ cells and FKRP L276IKI mouse derived satellite cells by a lentiviral vector expressing the wild-type of human FKRP gene. Moreover, we showed that LV-FKRP cells were driven to release exosomes carrying FKRP. Similarly, we observed the presence of FKRP positive exosomes in the plasma of FKRP L276IKI mice intramuscularly injected with engineered satellite cells. The distribution of FKRP protein boosted by exosomes determined its restoration within muscle tissues, an overall recovery of α-DG glycosylation and improved muscle strength, suggesting a systemic supply of FKRP protein acting as glycosyltransferase.


Assuntos
Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/terapia , Proteínas/metabolismo , Animais , Modelos Animais de Doenças , Distroglicanas/metabolismo , Exossomos , Glicosilação , Glicosiltransferases/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Mioblastos/metabolismo , Pentosiltransferases , Proteínas/genética , Células Satélites de Músculo Esquelético/transplante , Transferases
12.
Development ; 143(4): 658-69, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26884398

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disorder characterized by muscle wasting and premature death. The defective gene is dystrophin, a structural protein, absence of which causes membrane fragility and myofiber necrosis. Several lines of evidence showed that in adult DMD patients dystrophin is involved in signaling pathways that regulate calcium homeostasis and differentiation programs. However, secondary aspects of the disease, such as inflammation and fibrosis development, might represent a bias in the analysis. Because fetal muscle is not influenced by gravity and does not suffer from mechanical load and/or inflammation, we investigated 12-week-old fetal DMD skeletal muscles, highlighting for the first time early alterations in signaling pathways mediated by the absence of dystrophin itself. We found that PLC/IP3/IP3R/Ryr1/Ca(2+) signaling is widely active in fetal DMD skeletal muscles and, through the calcium-dependent PKCα protein, exerts a fundamental regulatory role in delaying myogenesis and in myofiber commitment. These data provide new insights into the origin of DMD pathology during muscle development.


Assuntos
Sinalização do Cálcio , Feto/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Desenvolvimento Muscular , Músculo Esquelético/embriologia , Distrofia Muscular de Duchenne/embriologia , Distrofia Muscular de Duchenne/metabolismo , Animais , Biomarcadores/metabolismo , Biópsia , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Feto/patologia , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Modelos Biológicos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/patologia , Fator de Transcrição PAX7/metabolismo , Proteína Quinase C-alfa/metabolismo
13.
Am J Transplant ; 18(3): 590-603, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29068143

RESUMO

Islet encapsulation may allow transplantation without immunosuppression, but thus far islets in large microcapsules transplanted in the peritoneal cavity have failed to reverse diabetes in humans. We showed that islet transplantation in confined well-vascularized sites like the epididymal fat pad (EFP) improved graft outcomes, but only conformal coated (CC) islets can be implanted in these sites in curative doses. Here, we showed that CC using polyethylene glycol (PEG) and alginate (ALG) was not immunoisolating because of its high permselectivity and strong allogeneic T cell responses. We refined the CC composition and explored PEG and islet-like extracellular matrix (Matrigel; MG) islet encapsulation (PEG MG) to improve capsule immunoisolation by decreasing its permselectivity and immunogenicity while allowing physiological islet function. Although the efficiency of diabetes reversal of allogeneic but not syngeneic CC islets was lower than that of naked islets, we showed that CC (PEG MG) islets from fully MHC-mismatched Balb/c mice supported long-term (>100 days) survival after transplantation into diabetic C57BL/6 recipients in the EFP site (750-1000 islet equivalents/mouse) in the absence of immunosuppression. Lack of immune cell penetration and T cell allogeneic priming was observed. These studies support the use of CC (PEG MG) for islet encapsulation and transplantation in clinically relevant sites without chronic immunosuppression.


Assuntos
Separação Celular/métodos , Diabetes Mellitus Experimental/terapia , Sobrevivência de Enxerto , Transplante das Ilhotas Pancreáticas/instrumentação , Ilhotas Pancreáticas/citologia , Neovascularização Fisiológica , Polietilenoglicóis/química , Aloenxertos , Animais , Cápsulas , Ilhotas Pancreáticas/imunologia , Transplante das Ilhotas Pancreáticas/métodos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
14.
J Neurosci Res ; 96(9): 1576-1585, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30113722

RESUMO

Spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of cerebellar degenerative disorders, characterized by progressive gait unsteadiness, hand incoordination, and dysarthria. Ataxia type 1 (SCA1) is caused by the expansion of a CAG trinucleotide repeat in the SCA1 gene resulting in the atypical extension of a polyglutamine (polyQ) tract within the ataxin-1 protein. Our main objective was to investigate the mitochondrial oxidative metabolism in the cerebellum of transgenic SCA1 mice. SCA1 transgenic mice develop clinical features in the early life stages (around 5 weeks of age) presenting pathological cerebellar signs with concomitant progressive Purkinje neuron atrophy and relatively little cell loss; this evidence suggests that the SCA1 phenotype is not the result of cell death per se, but a possible effect of cellular dysfunction that occurs before neuronal demise. We studied the mitochondrial oxidative metabolism in cerebellar cells from both homozygous and heterozygous transgenic SCA1 mice, aged 2 and 6 months. Histochemical examination showed a cytochrome-c-oxidase (COX) deficiency in the Purkinje cells (PCs) of both heterozygous and homozygous mice, the oxidative defect being more prominent in older mice, in which the percentage of COX-deficient PC was up to 30%. Using a laser-microdissector, we evaluated the mitochondrial DNA (mtDNA) content on selectively isolated COX-competent and COX-deficient PC by quantitative Polymerase Chain Reaction and we found mtDNA depletion in those with oxidative dysfunction. In conclusion, the selective oxidative metabolism defect observed in neuronal PC expressing mutant ataxin occurs as early as 8 weeks of age thus representing an early step in the PC degeneration process in SCA1 disease.


Assuntos
Deficiência de Citocromo-c Oxidase/metabolismo , DNA Mitocondrial/genética , Células de Purkinje/metabolismo , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Animais , Ataxina-1/genética , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Transgênicos , Células de Purkinje/ultraestrutura
15.
Mol Ther ; 24(11): 1898-1912, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27506451

RESUMO

Duchenne muscular dystrophy is an inherited fatal genetic disease characterized by mutations in dystrophin gene, causing membrane fragility leading to myofiber necrosis and inflammatory cell recruitment in dystrophic muscles. The resulting environment enriched in proinflammatory cytokines, like IFN-γ and TNF-α, determines the transformation of myofiber constitutive proteasome into the immunoproteasome, a multisubunit complex involved in the activation of cell-mediate immunity. This event has a fundamental role in producing peptides for antigen presentation by MHC class I, for the immune response and also for cytokine production and T-cell differentiation. Here, we characterized for the first time the presence of T-lymphocytes activated against revertant dystrophin epitopes, in the animal model of Duchenne muscular dystrophy, the mdx mice. Moreover, we specifically blocked i-proteasome subunit LMP7, which was up-regulated in dystrophic skeletal muscles, and we demonstrated the rescue of the dystrophin expression and the amelioration of the dystrophic phenotype. The i-proteasome blocking lowered myofiber MHC class I expression and self-antigen presentation to T cells, thus reducing the specific antidystrophin T cell response, the muscular cell infiltrate, and proinflammatory cytokine production, together with muscle force recovery. We suggest that i-proteasome inhibition should be considered as new promising therapeutic approach for Duchenne muscular dystrophy pathology.


Assuntos
Imunoproteínas/antagonistas & inibidores , Distrofia Muscular de Duchenne/tratamento farmacológico , Inibidores de Proteassoma/administração & dosagem , Linfócitos T/imunologia , Animais , Diferenciação Celular , Modelos Animais de Doenças , Terapia Genética , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/imunologia , Oligopeptídeos/administração & dosagem , Oligopeptídeos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/fisiologia
16.
Mol Ther ; 24(11): 1949-1964, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27506452

RESUMO

Duchenne muscular dystrophy is the most common genetic muscular dystrophy. It is caused by mutations in the dystrophin gene, leading to absence of muscular dystrophin and to progressive degeneration of skeletal muscle. We have demonstrated that the exon skipping method safely and efficiently brings to the expression of a functional dystrophin in dystrophic CD133+ cells injected scid/mdx mice. Golden Retriever muscular dystrophic (GRMD) dogs represent the best preclinical model of Duchenne muscular dystrophy, mimicking the human pathology in genotypic and phenotypic aspects. Here, we assess the capacity of intra-arterial delivered autologous engineered canine CD133+ cells of restoring dystrophin expression in Golden Retriever muscular dystrophy. This is the first demonstration of five-year follow up study, showing initial clinical amelioration followed by stabilization in mild and severe affected Golden Retriever muscular dystrophy dogs. The occurrence of T-cell response in three Golden Retriever muscular dystrophy dogs, consistent with a memory response boosted by the exon skipped-dystrophin protein, suggests an adaptive immune response against dystrophin.


Assuntos
Antígeno AC133/metabolismo , Imunidade Adaptativa , Distrofia Muscular Animal/terapia , Transplante de Células-Tronco/métodos , Animais , Células Cultivadas , Modelos Animais de Doenças , Cães , Seguimentos , Humanos , Distrofia Muscular Animal/imunologia , Células-Tronco/metabolismo , Transplante Autólogo , Resultado do Tratamento
17.
BMC Med Genet ; 17(1): 55, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27515321

RESUMO

BACKGROUND: The dystrophin gene is the one of the largest described in human beings and mutations associated to this gene are responsible for Duchenne or Becker muscular dystrophies. CASE PRESENTATION: Here we describe a nucleotide substitution in the acceptor splice site of intron 26 (c.3604-1G > C) carried by a 6-year-old boy who presented with a history of progressive proximal muscle weakness and elevated serum creatine kinase levels. RNA analysis showed that the first two nucleotides of the mutated intron 26 (AC) were not recognized by the splicing machinery and a new splicing site was created within exon 27, generating a premature stop codon and avoiding protein translation. CONCLUSIONS: The evaluation of the pathogenic effect of the mutation by mRNA analysis will be useful in the optics of an antisense oligonucleotides (AON)-based therapy.


Assuntos
Distrofina/genética , Mutação da Fase de Leitura , Distrofia Muscular de Duchenne/genética , Sítios de Splice de RNA , Substituição de Aminoácidos , Criança , Humanos , Íntrons , Masculino , Análise de Sequência de RNA
18.
J Muscle Res Cell Motil ; 37(3): 101-15, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27443559

RESUMO

Myofibrillar myopathies (MFMs) are genetically heterogeneous dystrophies characterized by the disintegration of Z-disks and myofibrils and are associated with mutations in genes encoding Z-disk or Z-disk-related proteins. The c.626 C > T (p.P209L) mutation in the BAG3 gene has been described as causative of a subtype of MFM. We report a sporadic case of a 26-year-old Italian woman, affected by MFM with axonal neuropathy, cardiomyopathy, rigid spine, who carries the c.626 C > T mutation in the BAG3 gene. The patient and her non-consanguineous healthy parents and brother were studied with whole exome sequencing (WES) to further investigate the genetic basis of this complex phenotype. In the patient, we found that the BAG3 mutation is associated with variants in the NRAP and FHL1 genes that encode muscle-specific, LIM domain containing proteins. Quantitative real time PCR, immunohistochemistry and Western blot analysis of the patient's muscular biopsy showed the absence of NRAP expression and FHL1 accumulation in aggregates in the affected skeletal muscle tissue. Molecular dynamic analysis of the mutated FHL1 domain showed a modification in its surface charge, which could affect its capability to bind its target proteins. To our knowledge this is the first study reporting, in a BAG3 MFM, the simultaneous presence of genetic variants in the BAG3 and FHL1 genes (previously described as independently associated with MFMs) and linking the NRAP gene to MFM for the first time.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/genética , Proteínas Musculares/genética , Miopatias Congênitas Estruturais/genética , Adulto , Exoma , Feminino , Humanos , Itália , Transfecção
19.
Biotechnol Bioeng ; 112(9): 1916-26, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25786390

RESUMO

With a view toward reduction of graft loss, we explored pancreatic islet transplantation within fibrin matrices rendered pro-angiogenic by incorporation of minimal doses of vascular endothelial growth factor-A165 and platelet-derived growth factor-BB presented complexed to a fibrin-bound integrin-binding fibronectin domain. Engineered matrices allowed for extended release of pro-angiogenic factors and for their synergistic signaling with extracellular matrix-binding domains in the post-transplant period. Aprotinin addition delayed matrix degradation and prolonged pro-angiogenic factor availability within the graft. Both subcutaneous (SC) and epididymal fat pad (EFP) sites were evaluated. We show that in the SC site, diabetes reversal in mice transplanted with 1,000 IEQ of syngeneic islets was not observed for islets transplanted alone, while engineered matrices resulted in a diabetes median reversal time (MDRT) of 38 days. In the EFP site, the MDRT with 250 IEQ of syngeneic islets within the engineered matrices was 24 days versus 86 days for islets transplanted alone. Improved function of engineered grafts was associated with enhanced and earlier (by day 7) angiogenesis. Our findings show that by engineering the transplant site to promote prompt re-vascularization, engraftment and long-term function of islet grafts can be improved in relevant extrahepatic sites.


Assuntos
Fibrina/química , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Becaplermina , Proliferação de Células/efeitos dos fármacos , Humanos , Hidrogéis/química , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-sis/química , Proteínas Proto-Oncogênicas c-sis/deficiência , Proteínas Proto-Oncogênicas c-sis/farmacologia , Fator A de Crescimento do Endotélio Vascular/química
20.
Development ; 138(20): 4523-33, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21903674

RESUMO

Mice deficient in α-sarcoglycan (Sgca-null mice) develop progressive muscular dystrophy and serve as a model for human limb girdle muscular dystrophy type 2D. Sgca-null mice suffer a more severe myopathy than that of mdx mice, the model for Duchenne muscular dystrophy. This is the opposite of what is observed in humans and the reason for this is unknown. In an attempt to understand the cellular basis of this severe muscular dystrophy, we isolated clonal populations of myogenic progenitor cells (MPCs), the resident postnatal muscle progenitors of dystrophic and wild-type mice. MPCs from Sgca-null mice generated much smaller clones than MPCs from wild-type or mdx dystrophic mice. Impaired proliferation of Sgca-null myogenic precursors was confirmed by single fiber analysis and this difference correlated with Sgca expression during MPC proliferation. In the absence of dystrophin and associated proteins, which are only expressed after differentiation, SGCA complexes with and stabilizes FGFR1. Deficiency of Sgca leads to an absence of FGFR1 expression at the membrane and impaired MPC proliferation in response to bFGF. The low proliferation rate of Sgca-null MPCs was rescued by transduction with Sgca-expressing lentiviral vectors. When transplanted into dystrophic muscle, Sgca-null MPCs exhibited reduced engraftment. The reduced proliferative ability of Sgca-null MPCs explains, at least in part, the severity of this muscular dystrophy and also why wild-type donor progenitor cells engraft efficiently and consequently ameliorate disease.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Desenvolvimento Muscular/fisiologia , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patologia , Mioblastos/citologia , Mioblastos/metabolismo , Sarcoglicanopatias/metabolismo , Sarcoglicanopatias/patologia , Sarcoglicanas/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Proliferação de Células , Primers do DNA/genética , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Knockout , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/terapia , Mioblastos/transplante , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Sarcoglicanopatias/genética , Sarcoglicanopatias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA