Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 362
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 626(7999): 661-669, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267581

RESUMO

Organisms determine the transcription rates of thousands of genes through a few modes of regulation that recur across the genome1. In bacteria, the relationship between the regulatory architecture of a gene and its expression is well understood for individual model gene circuits2,3. However, a broader perspective of these dynamics at the genome scale is lacking, in part because bacterial transcriptomics has hitherto captured only a static snapshot of expression averaged across millions of cells4. As a result, the full diversity of gene expression dynamics and their relation to regulatory architecture remains unknown. Here we present a novel genome-wide classification of regulatory modes based on the transcriptional response of each gene to its own replication, which we term the transcription-replication interaction profile (TRIP). Analysing single-bacterium RNA-sequencing data, we found that the response to the universal perturbation of chromosomal replication integrates biological regulatory factors with biophysical molecular events on the chromosome to reveal the local regulatory context of a gene. Whereas the TRIPs of many genes conform to a gene dosage-dependent pattern, others diverge in distinct ways, and this is shaped by factors such as intra-operon position and repression state. By revealing the underlying mechanistic drivers of gene expression heterogeneity, this work provides a quantitative, biophysical framework for modelling replication-dependent expression dynamics.


Assuntos
Bactérias , Replicação do DNA , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Transcrição Gênica , Bactérias/genética , Replicação do DNA/genética , Dosagem de Genes/genética , Redes Reguladoras de Genes , Genoma Bacteriano/genética , Óperon/genética , Análise de Sequência de RNA , Transcrição Gênica/genética , Cromossomos Bacterianos/genética
2.
Nature ; 579(7798): 260-264, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32132711

RESUMO

The production of pore-forming toxins that disrupt the plasma membrane of host cells is a common virulence strategy for bacterial pathogens such as methicillin-resistant Staphylococcus aureus (MRSA)1-3. It is unclear, however, whether host species possess innate immune mechanisms that can neutralize pore-forming toxins during infection. We previously showed that the autophagy protein ATG16L1 is necessary for protection against MRSA strains encoding α-toxin4-a pore-forming toxin that binds the metalloprotease ADAM10 on the surface of a broad range of target cells and tissues2,5,6. Autophagy typically involves the targeting of cytosolic material to the lysosome for degradation. Here we demonstrate that ATG16L1 and other ATG proteins mediate protection against α-toxin through the release of ADAM10 on exosomes-extracellular vesicles of endosomal origin. Bacterial DNA and CpG DNA induce the secretion of ADAM10-bearing exosomes from human cells as well as in mice. Transferred exosomes protect host cells in vitro by serving as scavengers that can bind multiple toxins, and improve the survival of mice infected with MRSA in vivo. These findings indicate that ATG proteins mediate a previously unknown form of defence in response to infection, facilitating the release of exosomes that serve as decoys for bacterially produced toxins.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Toxinas Bacterianas/metabolismo , Exossomos/metabolismo , Células A549 , Proteína ADAM10/metabolismo , Animais , Toxinas Bacterianas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , DNA Bacteriano/farmacologia , Exossomos/efeitos dos fármacos , Exossomos/ultraestrutura , Feminino , Células HEK293 , Humanos , Masculino , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Staphylococcus aureus Resistente à Meticilina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções Estafilocócicas/mortalidade
3.
PLoS Pathog ; 19(9): e1011647, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37738244

RESUMO

The bacterial microbiota promotes the life cycle of the intestine-dwelling whipworm Trichuris by mediating hatching of parasite eggs ingested by the mammalian host. Despite the enormous disease burden associated with Trichuris colonization, the mechanisms underlying this transkingdom interaction have been obscure. Here, we used a multiscale microscopy approach to define the structural events associated with bacteria-mediated hatching of eggs for the murine model parasite Trichuris muris. Through the combination of scanning electron microscopy (SEM) and serial block face SEM (SBFSEM), we visualized the outer surface morphology of the shell and generated 3D structures of the egg and larva during the hatching process. These images revealed that exposure to hatching-inducing bacteria catalyzed asymmetric degradation of the polar plugs prior to exit by the larva. Unrelated bacteria induced similar loss of electron density and dissolution of the structural integrity of the plugs. Egg hatching was most efficient when high densities of bacteria were bound to the poles. Consistent with the ability of taxonomically distant bacteria to induce hatching, additional results suggest chitinase released from larva within the eggs degrade the plugs from the inside instead of enzymes produced by bacteria in the external environment. These findings define at ultrastructure resolution the evolutionary adaptation of a parasite for the microbe-rich environment of the mammalian gut.


Assuntos
Microbiota , Trichuris , Camundongos , Animais , Microscopia Eletrônica de Varredura , Bactérias , Larva , Óvulo , Mamíferos
4.
PLoS Biol ; 20(9): e3001754, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36099266

RESUMO

Extracellular vesicles of endosomal origin, exosomes, mediate intercellular communication by transporting substrates with a variety of functions related to tissue homeostasis and disease. Their diagnostic and therapeutic potential has been recognized for diseases such as cancer in which signaling defects are prominent. However, it is unclear to what extent exosomes and their cargo inform the progression of infectious diseases. We recently defined a subset of exosomes termed defensosomes that are mobilized during bacterial infection in a manner dependent on autophagy proteins. Through incorporating protein receptors on their surface, defensosomes mediated host defense by binding and inhibiting pore-forming toxins secreted by bacterial pathogens. Given this capacity to serve as decoys that interfere with surface protein interactions, we investigated the role of defensosomes during infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of Coronavirus Disease 2019 (COVID-19). Consistent with a protective function, exosomes containing high levels of the viral receptor ACE2 in bronchoalveolar lavage fluid (BALF) from critically ill COVID-19 patients was associated with reduced intensive care unit (ICU) and hospitalization times. We found ACE2+ exosomes were induced by SARS-CoV-2 infection and activation of viral sensors in cell culture, which required the autophagy protein ATG16L1, defining these as defensosomes. We further demonstrate that ACE2+ defensosomes directly bind and block viral entry. These findings suggest that defensosomes may contribute to the antiviral response against SARS-CoV-2 and expand our knowledge on the regulation and effects of extracellular vesicles during infection.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19 , Humanos , Peptidil Dipeptidase A/metabolismo , Receptores Virais , SARS-CoV-2
5.
J Immunol ; 211(5): 836-843, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37466391

RESUMO

Our previous studies identified a population of stem cell-like proliferating myeloid cells within inflamed tissues that could serve as a reservoir for tissue macrophages to adopt different activation states depending on the microenvironment. By lineage-tracing cells derived from CX3CR1+ precursors in mice during infection and profiling by single-cell RNA sequencing, in this study, we identify a cluster of BIRC5+ myeloid cells that expanded in the liver during chronic infection with either the parasite Schistosoma mansoni or the bacterial pathogen Staphylococcus aureus. In the absence of tissue-damaging toxins, S. aureus infection does not elicit these BIRC5+ cells. Moreover, deletion of BIRC5 from CX3CR1-expressing cells results in improved survival during S. aureus infection. Hence the combination of single-cell RNA sequencing and genetic fate-mapping CX3CR1+ cells revealed a toxin-dependent pathogenic role for BIRC5 in myeloid cells during S. aureus infection.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Camundongos , Animais , Células Mieloides/patologia , Análise de Célula Única , Infecções Estafilocócicas/microbiologia
6.
Proc Natl Acad Sci U S A ; 119(31): e2123017119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35881802

RESUMO

Staphylococcus aureus is an opportunistic pathogen and chief among bloodstream-infecting bacteria. S. aureus produces an array of human-specific virulence factors that may contribute to immune suppression. Here, we defined the response of primary human phagocytes following infection with S. aureus using RNA-sequencing (RNA-Seq). We found that the overall transcriptional response to S. aureus was weak both in the number of genes and in the magnitude of response. Using an ex vivo bacteremia model with fresh human blood, we uncovered that infection with S. aureus resulted in the down-regulation of genes related to innate immune response and cytokine and chemokine signaling. This muted transcriptional response was conserved across diverse S. aureus clones but absent in blood exposed to heat-killed S. aureus or blood infected with the less virulent staphylococcal species Staphylococcus epidermidis. Notably, this signature was also present in patients with S. aureus bacteremia. We identified the master regulator S. aureus exoprotein expression (SaeRS) and the SaeRS-regulated pore-forming toxins as key mediators of the transcriptional suppression. The S. aureus-mediated suppression of chemokine and cytokine transcription was reflected by circulating protein levels in the plasma. Wild-type S. aureus elicited a soluble milieu that was restrictive in the recruitment of human neutrophils compared with strains lacking saeRS. Thus, S. aureus blunts the inflammatory response resulting in impaired neutrophil recruitment, which could promote the survival of the pathogen during invasive infection.


Assuntos
Interações Hospedeiro-Patógeno , Neutrófilos , Infecções Estafilocócicas , Staphylococcus aureus , Bacteriemia/imunologia , Bacteriemia/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citocinas/metabolismo , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Neutrófilos/imunologia , Neutrófilos/microbiologia , Proteínas Citotóxicas Formadoras de Poros/genética , Infecções Estafilocócicas/sangue , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Staphylococcus epidermidis/patogenicidade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
J Infect Dis ; 229(4): 999-1009, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37527470

RESUMO

BACKGROUND: The Global Influenza Hospital Surveillance Network (GIHSN) has since 2012 provided patient-level data on severe influenza-like-illnesses from >100 participating clinical sites worldwide based on a core protocol and consistent case definitions. METHODS: We used multivariable logistic regression to assess the risk of intensive care unit admission, mechanical ventilation, and in-hospital death among hospitalized patients with influenza and explored the role of patient-level covariates and country income level. RESULTS: The data set included 73 121 patients hospitalized with respiratory illness in 22 countries, including 15 660 with laboratory-confirmed influenza. After adjusting for patient-level covariates we found a 7-fold increase in the risk of influenza-related intensive care unit admission in lower middle-income countries (LMICs), compared with high-income countries (P = .01). The risk of mechanical ventilation and in-hospital death also increased by 4-fold in LMICs, though these differences were not statistically significant. We also find that influenza mortality increased significantly with older age and number of comorbid conditions. Across all severity outcomes studied and after controlling for patient characteristics, infection with influenza A/H1N1pdm09 was more severe than with A/H3N2. CONCLUSIONS: Our study provides new information on influenza severity in underresourced populations, particularly those in LMICs.


Assuntos
Influenza Humana , Humanos , Influenza Humana/epidemiologia , Vírus da Influenza A Subtipo H3N2 , Mortalidade Hospitalar , Hospitalização , Hospitais
8.
J Biol Chem ; 299(12): 105321, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37802313

RESUMO

Staphylococcus aureus (S. aureus) is a serious global pathogen that causes a diverse range of invasive diseases. S. aureus utilizes a family of pore-forming toxins, known as bi-component leukocidins, to evade the host immune response and promote infection. Among these is LukAB (leukocidin A/leukocidin B), a toxin that assembles into an octameric ß-barrel pore in the target cell membrane, resulting in host cell death. The established cellular receptor for LukAB is CD11b of the Mac-1 complex. Here, we show that hydrogen voltage-gated channel 1 is also required for the cytotoxicity of all major LukAB variants. We demonstrate that while each receptor is sufficient to recruit LukAB to the plasma membrane, both receptors are required for maximal lytic activity. Why LukAB requires two receptors, and how each of these receptors contributes to pore-formation remains unknown. To begin to resolve this, we performed an alanine scanning mutagenesis screen to identify mutations that allow LukAB to maintain cytotoxicity without CD11b. We discovered 30 mutations primarily localized in the stem domains of LukA and LukB that enable LukAB to exhibit full cytotoxicity in the absence of CD11b. Using crosslinking, electron microscopy, and hydroxyl radical protein footprinting, we show these mutations increase the solvent accessibility of the stem domain, priming LukAB for oligomerization. Together, our data support a model in which CD11b binding unlatches the membrane penetrating stem domains of LukAB, and this change in flexibility promotes toxin oligomerization.


Assuntos
Proteínas de Bactérias , Leucocidinas , Staphylococcus aureus , Toxinas Biológicas , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Leucocidinas/genética , Leucocidinas/metabolismo , Leucocidinas/toxicidade , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Toxinas Biológicas/metabolismo , Mutação , Ligação Proteica/genética , Domínios Proteicos , Linhagem Celular , Células CHO , Cricetulus , Animais
9.
Infect Immun ; 92(2): e0052623, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38235972

RESUMO

Staphylococcus aureus is a gram-positive pathogen that poses a major health concern, in part due to its large array of virulence factors that allow infection and evasion of the immune system. One of these virulence factors is the bicomponent pore-forming leukocidin LukAB. The regulation of lukAB expression is not completely understood, especially in the presence of immune cells such as human polymorphonuclear neutrophils (hPMNs). Here, we screened for transcriptional regulators of lukAB during the infection of primary hPMNs. We uncovered that PerR, a peroxide sensor, is vital for hPMN-mediated induction of lukAB and that PerR upregulates cytotoxicity during the infection of hPMNs. Exposure of S. aureus to hydrogen peroxide (H2O2) alone also results in increased lukAB promoter activity, a phenotype dependent on PerR. Collectively, our data suggest that S. aureus uses PerR to sense the H2O2 produced by hPMNs to stimulate the expression of lukAB, allowing the bacteria to withstand these critical innate immune cells.IMPORTANCEStaphylococcus aureus utilizes a diverse set of virulence factors, such as leukocidins, to subvert human neutrophils, but how these toxins are regulated is incompletely defined. Here, we identified the peroxide-sensitive repressor, PerR, as a required protein involved in the induction of lukAB in the presence of primary human neutrophils, a phenotype directly linked to the ability of PerR to sense H2O2. Thus, we show that S. aureus coordinates sensing and resistance to oxidative stress with toxin production to promote pathogen survival.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Neutrófilos , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Proteínas de Bactérias/metabolismo , Leucocidinas , Infecções Estafilocócicas/microbiologia
10.
Nat Chem Biol ; 18(7): 706-712, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35361990

RESUMO

Membrane protein efflux pumps confer antibiotic resistance by extruding structurally distinct compounds and lowering their intracellular concentration. Yet, there are no clinically approved drugs to inhibit efflux pumps, which would potentiate the efficacy of existing antibiotics rendered ineffective by drug efflux. Here we identified synthetic antigen-binding fragments (Fabs) that inhibit the quinolone transporter NorA from methicillin-resistant Staphylococcus aureus (MRSA). Structures of two NorA-Fab complexes determined using cryo-electron microscopy reveal a Fab loop deeply inserted in the substrate-binding pocket of NorA. An arginine residue on this loop interacts with two neighboring aspartate and glutamate residues essential for NorA-mediated antibiotic resistance in MRSA. Peptide mimics of the Fab loop inhibit NorA with submicromolar potency and ablate MRSA growth in combination with the antibiotic norfloxacin. These findings establish a class of peptide inhibitors that block antibiotic efflux in MRSA by targeting indispensable residues in NorA without the need for membrane permeability.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica , Humanos , Testes de Sensibilidade Microbiana , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/farmacologia , Staphylococcus aureus/metabolismo
11.
Infect Immun ; 91(4): e0004623, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36975788

RESUMO

The regulation of membrane protein activity for cellular functions is critically dependent on the composition of phospholipid membranes. Cardiolipin, a unique phospholipid found in bacterial membranes and mitochondrial membranes of eukaryotes, plays a crucial role in stabilizing membrane proteins and maintaining their function. In the human pathogen Staphylococcus aureus, the SaeRS two-component system (TCS) controls the expression of key virulence factors essential for the bacterium's virulence. The SaeS sensor kinase activates the SaeR response regulator via phosphoryl transfer to bind its gene target promoters. In this study, we report that cardiolipin is critical for sustaining the full activity of SaeRS and other TCSs in S. aureus. The sensor kinase protein SaeS binds directly to cardiolipin and phosphatidylglycerol, enabling SaeS activity. Elimination of cardiolipin from the membrane reduces SaeS kinase activity, indicating that bacterial cardiolipin is necessary for modulating the kinase activities of SaeS and other sensor kinases during infection. Moreover, the deletion of cardiolipin synthase genes cls1 and cls2 leads to reduced cytotoxicity to human neutrophils and lower virulence in a mouse model of infection. These findings suggest a model where cardiolipin modulates the kinase activity of SaeS and other sensor kinases after infection to adapt to the hostile environment of the host and expand our knowledge of how phospholipids contribute to membrane protein function.


Assuntos
Cardiolipinas , Fatores de Transcrição , Animais , Camundongos , Humanos , Cardiolipinas/metabolismo , Fatores de Transcrição/genética , Staphylococcus aureus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Regulação Bacteriana da Expressão Gênica
12.
Infect Immun ; 91(4): e0053222, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36939325

RESUMO

Staphylococcus aureus is a successful pathogen that produces a wide range of virulence factors that it uses to subvert and suppress the immune system. These include the bicomponent pore-forming leukocidins. How the expression of these toxins is regulated is not completely understood. Here, we describe a screen to identify transcription factors involved in the regulation of leukocidins. The most prominent discovery from this screen is that SarS, a known transcription factor which had previously been described as a repressor of alpha-toxin expression, was found to be a potent repressor of leukocidins LukED and LukSF-PV. We found that inactivating sarS resulted in increased virulence both in an ex vivo model using primary human neutrophils and in an in vivo infection model in mice. Further experimentation revealed that SarS represses leukocidins by serving as an activator of Rot, a critical repressor of toxins, as well as by directly binding and repressing the leukocidin promoters. By studying contemporary clinical isolates, we identified naturally occurring mutations in the sarS promoter that resulted in overexpression of sarS and increased repression of leukocidins in USA300 bloodstream clinical isolates. Overall, these data establish SarS as an important repressor of leukocidins and expand our understanding of how these virulence factors are being regulated in vitro and in vivo by S. aureus.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Humanos , Camundongos , Exotoxinas/genética , Exotoxinas/metabolismo , Leucocidinas/genética , Neutrófilos , Fatores de Transcrição/metabolismo , Fatores de Virulência/metabolismo
13.
Microbiology (Reading) ; 169(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37702594

RESUMO

Cholesterol-dependent cytolysins (CDCs) are a large family of pore-forming toxins, produced by numerous Gram-positive pathogens. CDCs depend on host membrane cholesterol for pore formation; some CDCs also require surface-associated human CD59 (hCD59) for binding, conferring specificity for human cells. We purified a recombinant version of a putative CDC encoded in the genome of Streptococcus oralis subsp. tigurinus, tigurilysin (TGY), and used CRISPR/Cas9 to construct hCD59 knockout (KO) HeLa and JEG-3 cell lines. Cell viability assays with TGY on wild-type and hCD59 KO cells showed that TGY is a hCD59-dependent CDC. Two variants of TGY exist among S. oralis subsp. tigurinus genomes, only one of which is functional. We discovered that a single amino acid change between these two TGY variants determines its activity. Flow cytometry and oligomerization Western blots revealed that the single amino acid difference between the two TGY isoforms disrupts host cell binding and oligomerization. Furthermore, experiments with hCD59 KO cells and cholesterol-depleted cells demonstrated that TGY is fully dependent on both hCD59 and cholesterol for activity, unlike other known hCD59-dependent CDCs. Using full-length CDCs and toxin constructs differing only in the binding domain, we determined that having hCD59 dependence leads to increased lysis efficiency, conferring a potential advantage to organisms producing hCD59-dependent CDCs.


Assuntos
Citotoxinas , Especificidade de Hospedeiro , Humanos , Linhagem Celular Tumoral , Citotoxinas/genética , Colesterol , Aminoácidos , Antígenos CD59/genética
14.
Respir Res ; 24(1): 213, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37635251

RESUMO

BACKGROUND: The airway epithelium is composed of diverse cell types with specialized functions that mediate homeostasis and protect against respiratory pathogens. Human airway epithelial (HAE) cultures at air-liquid interface are a physiologically relevant in vitro model of this heterogeneous tissue and have enabled numerous studies of airway disease. HAE cultures are classically derived from primary epithelial cells, the relatively limited passage capacity of which can limit experimental methods and study designs. BCi-NS1.1, a previously described and widely used basal cell line engineered to express hTERT, exhibits extended passage lifespan while retaining the capacity for differentiation to HAE. However, gene expression and innate immune function in BCi-NS1.1-derived versus primary-derived HAE cultures have not been fully characterized. METHODS: BCi-NS1.1-derived HAE cultures (n = 3 independent differentiations) and primary-derived HAE cultures (n = 3 distinct donors) were characterized by immunofluorescence and single cell RNA-Seq (scRNA-Seq). Innate immune functions were evaluated in response to interferon stimulation and to infection with viral and bacterial respiratory pathogens. RESULTS: We confirm at high resolution that BCi-NS1.1- and primary-derived HAE cultures are largely similar in morphology, cell type composition, and overall gene expression patterns. While we observed cell-type specific expression differences of several interferon stimulated genes in BCi-NS1.1-derived HAE cultures, we did not observe significant differences in susceptibility to infection with influenza A virus and Staphylococcus aureus. CONCLUSIONS: Taken together, our results further support BCi-NS1.1-derived HAE cultures as a valuable tool for the study of airway infectious disease.


Assuntos
Células Epiteliais , Interferons , Humanos , Epitélio , Diferenciação Celular , Expressão Gênica
15.
Liver Int ; 43 Suppl 1: 108-115, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35748639

RESUMO

Hepatitis delta virus (HDV) is a defective agent that only infects individuals with hepatitis B virus (HBV). Around 5-10% of chronic hepatitis B patients worldwide are superinfected with HDV, which means 15-25 million people. Hepatitis delta is the most severe of all chronic viral hepatitis, leading to cirrhosis, liver cancer and/or transplantation in most patients. Despite it, many HDV patients remain undiagnosed. The only treatment available until recently was peginterferon alfa, with poor results and significant side effects. The recent approval of bulevirtide, a lipopeptide that blocks HBV/HDV entry, has revolutionized the field. Another drug, lonafarnib, already approved to treat progeria, is expected to be available soon as HDV therapy. Since there is no cell reservoir for the HDV RNA genome, hypothetically viral clearance could be achieved if complete blocking of viral replication occurs for a minimum time frame. This is what happens in hepatitis C using direct-acting antivirals, with the achievement of cure in nearly all treated patients. We envision the cure of hepatitis delta using combination antiviral therapy. Given that sexual and parenteral transmission routes are the most frequent for the acquisition of HBV and HDV, shared with HIV infection and HBV/HDV and HIV coinfection. The clinical outcome of hepatitis delta is worst in the HIV setting, with more frequent liver complications. Since most persons infected with HIV are on regular health care follow-up, we propose that HIV-HDV patients should be prioritized for moving forward new and potentially curative treatments for hepatitis delta.


Assuntos
Coinfecção , Infecções por HIV , Hepatite B Crônica , Hepatite B , Hepatite C Crônica , Hepatite D , Humanos , Antivirais/uso terapêutico , Antivirais/farmacologia , Vírus Delta da Hepatite/genética , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Hepatite C Crônica/tratamento farmacológico , Hepatite B Crônica/tratamento farmacológico , Vírus da Hepatite B/genética , Hepatite D/complicações , Hepatite D/tratamento farmacológico , Hepatite D/epidemiologia , Hepatite B/complicações , Coinfecção/tratamento farmacológico
16.
Inorg Chem ; 62(21): 8271-8284, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37196103

RESUMO

Glassy solid electrolytes (GSEs) are promising solid electrolytes in the development of all solid-state batteries. Mixed oxy-sulfide nitride (MOSN) GSEs combine the high ionic conductivity of sulfide glasses, the excellent chemical stability of oxide glasses, and the electrochemical stability of nitride glasses. However, the reports on the synthesis and characterization of these novel nitrogen containing electrolytes are quite limited. Therefore, the systematic incorporation of LiPON during glass synthesis was used to explore the effects of nitrogen and oxygen additions on the atomic-level structures in the glass transition (Tg) and crystallization temperature (Tc) of MOSN GSEs. The MOSN GSE series 58.3Li2S + 31.7SiS2 + 10[(1 - x)Li0.67PO2.83 + x LiPO2.53N0.314], x = 0.0, 0.06, 0.12, 0.2, 0.27, 0.36, was prepared by melt-quench synthesis. Differential scanning calorimetry was used to determine the Tg and Tc values of these glasses. Fourier transformation-infrared, Raman, and magic angle spinning nuclear magnetic resonance spectroscopies were used to examine the short-range order structures of these materials. X-ray photoelectron spectroscopy was conducted on the glasses to further understand the bonding environments of the doped nitrogen. Finally, N and S elemental analyses were used to confirm the composition of these GSEs. These results are used to elucidate the structure of these glasses and to understand the thermal property impact oxygen and nitrogen doping in these GSEs.

17.
Mycoses ; 66(9): 810-814, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37264489

RESUMO

INTRODUCTION: Mortality from candidemia is higher in elderly population than in younger patients, which may be related to suboptimal management. The aim of the present study is to evaluate adherence to the recommendations for the clinical management of candidemia in a population over 75 years before and after implementing specific training. PATIENTS AND METHODS: We recorded retrospectively data from candidemia episodes in elderly patients during two periods of time: 2010-2015 years (before training) and 2017-2022 years (after training), as well as adherence to the recommendations of the clinical practice guidelines, mortality and consultation to infectious disease specialists. RESULTS: Forty-five episodes of candidemia were recorded in the first period and 29 episodes in the second period. A better compliance to the recommendations of the clinical practice guidelines was observed in the second period: echocardiogram performance (75.9% vs. 48.9% p = .021), fundoscopy (65.5% vs. 44.4% p = .076), follow-up blood cultures (72.4% vs. 42.2% p = .011), removal of central venous catheter (80% vs. 52.9% p = .080) and adequate antifungal treatment (82.6% vs. 52.6% p = .018). A trend towards lower mortality was observed during the second period (27.6% vs. 44.4% p = .144). CONCLUSION: The improvement of knowledge of clinical guidelines on candidemia and the participation of infectious disease specialists may increase the quality of care in elderly patients with candidemia. It would be necessary to enlarge the sample size to evaluate the real impact of this intervention on mortality.


Assuntos
Candidemia , Cateteres Venosos Centrais , Doenças Transmissíveis , Humanos , Idoso , Candidemia/diagnóstico , Candidemia/tratamento farmacológico , Candidemia/epidemiologia , Candida , Estudos Retrospectivos , Antifúngicos/uso terapêutico , Antifúngicos/farmacologia , Doenças Transmissíveis/tratamento farmacológico
18.
Chem Biodivers ; 20(10): e202300893, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37695827

RESUMO

The cytotoxic activity of combinations of masticadienonic (AMD) or 3αOH-hydroxy-masticadienonic (3αOH-AMD) acids with cisplatin (CDDP) was evaluated against PC3 prostate and HCT116 colon cancer cell lines. Combinations A (half the IC50 value), B (IC50 value), and C (twice the IC50 value) were tested at a 1 : 1 ratio. All AMD plus CDDP combinations demonstrated increased cytotoxic effect, as determined by the sulforhodamine B test, in both cell types. The best combination was B, which showed 93 % and 91 % inhibition of the proliferation of PC3 and HCT116 cells, respectively. It also increased apoptosis in the PC3 cell lines, as evaluated by flow cytometry. However, in vivo tests showed no additional activity from the AMD plus CDDP combinations. These results showed that the increased cytotoxic activity of the combinations in vitro did not reflect in vivo tests. All combinations of 3αOH-AMD plus CDDP exerted antagonistic effects in both cell types.

19.
J Foot Ankle Surg ; 62(5): 899-903, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37286098

RESUMO

Estimates of pes planus ("flatfoot") prevalence vary considerably across studies. Moreover, there is uncertainty over which factors are associated with the pes planus prevalence. We aimed to systematically review the prevalence and clinical factors associated with flatfoot among children and adults. We searched Web of Science, PubMed/MEDLINE, and Google Scholar databases reporting population-based flatfoot prevalence. Two reviewers independently extracted the data and assessed the qualities of the studies. Subgroup analysis was conducted to analyze the associated factors on flatfoot prevalence. Frequencies, odds ratios (OR), and 95% confidence intervals (CI) were performed using descriptive analysis and chi-square test accounting for heterogeneity. Any conflict in the data analysis was discussed by all the reviewers. Twelve studies including 2509 flatfoot cases were analyzed (overall prevalence 15.6%, n = 16,000). The subgroup analysis indicated that male gender (OR = 1.26, 95% CI: 1.15-1.37), age groups 3 to 5 years (OR = 2.02, 95% CI: 1.78-2.30) and 11 to 17 years (OR = 1.91, 95% CI: 1.64-2.22), Asian race (OR = 2.34, 95% CI: 2.10-2.60), and obesity (OR = 2.62, 95% CI: 2.06-3.32) were more associated with flatfoot (p < .001). Conversely, female gender (OR = 0.44, 95% CI: 0.40-0.48) and White race (OR = 0.52, 95% CI: 0.47-0.57) were less associated with flatfoot (p < .001). Our findings may be valuable for clinical/surgical settings, particularly, for those modifiable findings and targeted populations. However, we suggest that future studies estimating flatfoot should consider prospective/multicenter designs using a common screening methods in random samples populations.


Assuntos
Pé Chato , Humanos , Masculino , Criança , Adulto , Feminino , Pré-Escolar , Pé Chato/diagnóstico , Prevalência , Estudos Prospectivos , Obesidade/complicações , Bases de Dados Factuais , Estudos Multicêntricos como Assunto
20.
J Infect Dis ; 225(8): 1460-1470, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33895843

RESUMO

Vaccines against Staphylococcus aureus have eluded researchers for >3 decades while the burden of staphylococcal diseases has increased. Early vaccine attempts mainly used rodents to characterize preclinical efficacy, and all subsequently failed in human clinical efficacy trials. More recently, leukocidin AB (LukAB) has gained interest as a vaccine antigen. We developed a minipig deep surgical wound infection model offering 3 independent efficacy readouts: bacterial load at the superficial and at the deep-seated surgical site, and dissemination of bacteria. Due to similarities with humans, minipigs are an attractive option to study novel vaccine candidates. With this model, we characterized the efficacy of a LukAB toxoid as vaccine candidate. Compared to control animals, a 3-log reduction of bacteria at the deep-seated surgical site was observed in LukAB-treated minipigs and dissemination of bacteria was dramatically reduced. Therefore, LukAB toxoids may be a useful addition to S. aureus vaccines and warrant further study.


Assuntos
Infecções Estafilocócicas , Vacinas Antiestafilocócicas , Animais , Carga Bacteriana , Proteínas de Bactérias , Leucocidinas , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus , Infecção da Ferida Cirúrgica/prevenção & controle , Suínos , Porco Miniatura , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA