Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 16(8)2018 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-30126191

RESUMO

In this paper, we present the fabrication and characterization of new chitosan-based membranes while using a new biotechnology for immobilizing alkaline phosphatase (ALP). This technology involved metal ions incorporation to develop new biopolymeric supports. The chemical structure and morphological characteristics of proposed membranes were evaluated by infrared spectroscopy (FT-IR) and the scanning electron microscopy technique (SEM). The inductively coupled plasma mass spectrometry (ICP-MS) evidenced the metal ion release in time. Moreover, the effect of Mg2+ on the enzymatic activity and the antibacterial investigations while using Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria, hemolysis, and biocompatibility behavior were studied. Immobilizing ALP into the chitosan membranes composition followed by the incorporation of Mg2+ led to polymeric supports with enhanced cellular viability when comparing to chitosan-based membranes without Mg2+. The results obtained evidenced promising performance in biomedical applications for the new biopolymeric supports that are based on chitosan, ALP, and metal ions.


Assuntos
Fosfatase Alcalina/química , Quitosana/química , Magnésio/química , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Íons/química , Microscopia Eletrônica de Varredura/métodos , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Staphylococcus aureus/efeitos dos fármacos
2.
J Mech Behav Biomed Mater ; 112: 104084, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32949866

RESUMO

The present work introduces nanostructured Zr as a possible choice of metallic implant biomaterial in competition with titanium and its new alloys. The paper reports on the preparation of anodized zirconium in a mixture of electrolytes with fluoride ions, 1 M (NH4)2SO4 + 0.15 M NH4F + distilled water, at 20 V. The obtained nanostructures were investigated by SEM, EDX, XRD and AFM techniques. The SEM - EDX longitudinal and cross sectional analysis revealed the morphology of the formed oxide layers and their thicknesses, which were found to be 7.45 ± 0.18 µm. The mean nanopores' diameter was calculated as 15.8 ± 3.3 nm. The XRD investigations enabled the evaluation of crystallite sizes and texture coefficients for zirconium and zirconium oxide containing samples. The inhibition effect against Escherichia coli and Streptococcus Aureus bacteria was evaluated and discussed as well. The AFM studies revealed that the nano-porous Zr has similar hardness parameter as the uncoated Zr, but lower surface adhesion force that could be translated into improved properties in terms of antimicrobial effects, as confirmed by its inhibition index, which makes it a very promising material for bio-medical applications.


Assuntos
Fluoretos , Zircônio , Estudos Transversais , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Titânio
3.
Pharmaceutics ; 10(4)2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30413075

RESUMO

The present paper aims atincreasing the bioperformance of implantable Ti50Zr alloy using zwitterionic cysteine drug coating. Aspects such as stability, biocompatibility, and antibacterial effects were investigated with the help of various methods such as infrared spectroscopy (FT-IR), scanning electronic microscopy (SEM), electrochemical methods, contact angle determinations and cell response. The experimental data of zwitterionic cysteine coating indicate the existence of a hydration layer due to hydrophilic groups evidenced in FT-IR which is responsible for the decrease of contact angle and antibacterial capabilities. The electrochemical stability was evaluatedbased on Tafel plots and electrochemical impedance spectroscopy (EIS). The cell response to cysteine was determined with gingival fibroblasts measuring lactate dehydrogenase (LDH) activity, concentrations of nitric oxide (NO) and intracellular level of reactive oxygen species (ROS). All experimental results supported the increase of stability and better cells response of implantable Ti50Zr alloy coated with zwitterionic cysteine drug. The antibacterial index was measured against Staphylococcus aureus and Escherichia coli. It was demonstrated that the coating enhanced the production of intracellular ROS in time, which subsequently caused a significant increase in antibacterial index.

4.
Int J Pharm ; 517(1-2): 296-302, 2017 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-27913240

RESUMO

Herein we investigate the efficiency of various biomimetic coatings for localized drug delivery, using vancomycin as key therapeutic drug, which is a widely used antibiotic for the treatment of strong infections caused by positive Gram bacteria. We evaluate classical hydroxyapatite and biomimetic hydroxyapatite-collagen coatings obtained by electrochemical deposition as well as TiO2 nanotubes arrays obtained by electrochemical anodization. Surface morphology, compositional and structural data confirm the incorporation of vancomycin into the layers and drug release profiles for vancomycin evaluate their release ability. Namely, hydroxyapatite coatings lead to a ≈92% vancomycin release after 30h and hydroxyapatite-collagen to 85%, while the TiO2 nanotubes layers lead to 78% release. The antibacterial effect of such drug loaded coatings is evaluated against S. aureus (Gram-positive bacteria). Our study shows that the vancomycin incorporated hydroxyapatite coatings lead to a faster release, while the nanotubular coatings may lead to longer time release and additionally both types of coatings ensure a good antibacterial inhibition.


Assuntos
Materiais Revestidos Biocompatíveis/química , Durapatita/química , Nanotubos/química , Titânio/química , Vancomicina/farmacologia , Vancomicina/farmacocinética , Colágeno/química , Liberação Controlada de Fármacos , Testes de Sensibilidade Microbiana , Nanotubos/ultraestrutura , Vancomicina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA