Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Viruses ; 12(12)2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276600

RESUMO

The virion proteins of Kaposi sarcoma-associated herpesvirus (KSHV) were initially characterized in 2005 in two separate studies that combined the detection of 24 viral proteins and a few cellular components via LC-MS/MS or MALDI-TOF. Despite considerable advances in the sensitivity and specificity of mass spectrometry instrumentation in recent years, leading to significantly higher yields in detections, the KSHV virion proteome has not been revisited. In this study, we have re-examined the protein composition of purified KSHV virions via ultra-high resolution Qq time-of-flight mass spectrometry (UHR-QqTOF). Our results confirm the detection of all previously reported virion proteins, in addition to 17 other viral proteins, some of which have been characterized as virion-associated using other methods, and 10 novel proteins identified as virion-associated for the first time in this study. These results add KSHV ORF9, ORF23, ORF35, ORF48, ORF58, ORF72/vCyclin, K3, K9/vIRF1, K10/vIRF4, and K10.5/vIRF3 to the list of KSHV proteins that can be incorporated into virions. The addition of these proteins to the KSHV virion proteome provides novel and important insight into early events in KSHV infection mediated by virion-associated proteins. Data are available via ProteomeXchange with identifier PXD022626.


Assuntos
Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/metabolismo , Proteoma , Proteômica , Proteínas Virais/metabolismo , Vírion/metabolismo , Linhagem Celular , Fracionamento Químico , Cromatografia Líquida , Herpesvirus Humano 8/isolamento & purificação , Humanos , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Controle de Qualidade , Espectrometria de Massas em Tandem , Proteínas Virais/isolamento & purificação , Vírion/isolamento & purificação
2.
Mol Cancer Ther ; 16(9): 1779-1790, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28619753

RESUMO

Hsp90 is a molecular chaperone that protects proteins, including oncogenic signaling complexes, from proteolytic degradation. PU-H71 is a next-generation Hsp90 inhibitor that preferentially targets the functionally distinct pool of Hsp90 present in tumor cells. Tumors that are driven by the MYC oncoprotein may be particularly sensitive to PU-H71 due to the essential role of Hsp90 in the epichaperome, which maintains the malignant phenotype in the setting of MYC. Burkitt lymphoma (BL) is an aggressive B-cell lymphoma characterized by MYC dysregulation. In this study, we evaluated Hsp90 as a potential therapeutic target in BL. We found that primary BL tumors overexpress Hsp90 and that Hsp90 inhibition has antitumor activity in vitro and in vivo, including potent activity in a patient-derived xenograft model of BL. To evaluate the targets of PU-H71 in BL, we performed high-affinity capture followed by proteomic analysis using mass spectrometry. We found that Hsp90 inhibition targets multiple components of PI3K/AKT/mTOR signaling, highlighting the importance of this pathway in BL. Finally, we found that the anti-lymphoma activity of PU-H71 is synergistic with dual PI3K/mTOR inhibition in vitro and in vivo Overall, this work provides support for Hsp90 as a therapeutic target in BL and suggests the potential for combination therapy with PU-H71 and inhibitors of PI3K/mTOR. Mol Cancer Ther; 16(9); 1779-90. ©2017 AACR.


Assuntos
Antineoplásicos/farmacologia , Linfoma de Burkitt/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/genética , Linfoma de Burkitt/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Expressão Gênica , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Masculino , Camundongos , Proteômica/métodos , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética
3.
mBio ; 6(3): e00668, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26045540

RESUMO

UNLABELLED: Kaposi sarcoma (KS) herpesvirus (KSHV) infection of endothelial cells (EC) is associated with strong induction of heme oxygenase-1 (HO-1), a stress-inducible host gene that encodes the rate-limiting enzyme responsible for heme catabolism. KS is an angioproliferative tumor characterized by the proliferation of KSHV-infected spindle cells, and HO-1 is highly expressed in such cells. HO-1 converts the pro-oxidant, proinflammatory heme molecule into metabolites with antioxidant, anti-inflammatory, and proliferative activities. Previously published work has shown that KSHV-infected EC in vitro proliferate in response to free heme in a HO-1-dependent manner, thus implicating virus-enhanced HO-1 activity in KS tumorigenesis. The present study investigated the molecular mechanisms underlying KSHV induction of HO-1 in lymphatic EC (LEC), which are the likely spindle cell precursors. In a time course analysis of KSHV-infected cells, HO-1 expression displays biphasic kinetics characterized by an early transient induction that is followed by a more sustained upregulation coincident with the establishment of viral latency. A viral microRNA miR-K12-11 deletion mutant of KSHV was found to be defective for induction of HO-1 during latency. A potential mechanism for this phenotype was provided by BACH1, a cellular HO-1 transcriptional repressor targeted by miR-K12-11. In fact, in KSHV-infected LEC, the BACH1 message level is reduced, BACH1 subcellular localization is altered, and miR-K12-11 mediates the inverse regulation of HO-1 and BACH1 during viral latency. Interestingly, the data indicate that neither miR-K12-11 nor de novo KSHV gene expression is required for the burst of HO-1 expression observed at early times postinfection, which suggests that additional virion components promote this phenotype. IMPORTANCE: While the mechanisms underlying KSHV induction of HO-1 remain unknown, the cellular mechanisms that regulate HO-1 expression have been extensively investigated in the context of basal and pathophysiological states. The detoxifying action of HO-1 is critical for the protection of cells exposed to high heme levels. KS spindle cells are erythrophagocytic and contain erythrocyte ghosts. Erythrocyte degeneration leads to the localized release of heme, creating oxidative stress that may be further exacerbated by environmental or other cofactors. Our previous work showed that KSHV-infected cells proliferate in response to heme and that this occurs in a HO-1-dependent manner. We therefore hypothesize that KSHV induction of HO-1 contributes to KS tumor development via heme metabolism and propose that HO-1 be evaluated as a therapeutic target for KS. Our present work, which aimed to understand the mechanisms whereby KSHV induces HO-1, will be important for the design and implementation of such a strategy.


Assuntos
Células Endoteliais/virologia , Heme Oxigenase-1/biossíntese , Herpesvirus Humano 8/fisiologia , MicroRNAs/metabolismo , RNA Viral/metabolismo , Deleção de Genes , Regulação da Expressão Gênica , Herpesvirus Humano 8/genética , Interações Hospedeiro-Patógeno , Regulação para Cima , Latência Viral
4.
Cell Adh Migr ; 8(2): 165-76, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24710021

RESUMO

The homeostatic function of endothelial cells (EC) is critical for a number of physiological processes including vascular integrity, immunity, and wound healing. Indeed, vascular abnormalities resulting from EC dysfunction contribute to the development and spread of malignancies. The alternative SDF-1/CXCL12 receptor CXCR7 is frequently and specifically highly expressed in tumor-associated vessels. In this study, we investigate whether CXCR7 contributes to vascular dysfunction by specifically examining the effect of CXCR7 expression on EC barrier function and motility. We demonstrate that CXCR7 expression in EC results in redistribution of CD31/PECAM-1 and loss of contact inhibition. Moreover, CXCR7+ EC are deficient in barrier formation. We show that CXCR7-mediated motility has no influence on angiogenesis but contributes to another motile process, the invasion of CXCR7+ EC into ligand-rich niches. These results identify CXCR7 as a novel manipulator of EC barrier function via alteration of PECAM-1 homophilic junctions. As such, aberrant expression of CXCR7 in the vasculature has the potential to disrupt vascular homeostasis and could contribute to vascular dysfunction in cancer systems.


Assuntos
Células Endoteliais/metabolismo , Invasividade Neoplásica/genética , Neoplasias/genética , Receptores CXCR/genética , Células Endoteliais/patologia , Regulação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Homeostase , Humanos , Ligantes , Invasividade Neoplásica/patologia , Neoplasias/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptores CXCR/biossíntese , Transdução de Sinais/genética
5.
PLoS One ; 8(7): e69828, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894550

RESUMO

Angiogenesis is a critical factor in the growth and dissemination of solid tumors. Indeed, tumor vasculature is abnormal and contributes to the development and spread of malignancies by creating a hostile microenvironment. The alternative SDF-1/CXCL12 receptor, CXCR7, is frequently and specifically expressed in tumor-associated vessels. In this study, we examine the role of endothelium-expressed CXCR7 in tumor vascular dysfunction by specifically examining the contribution of CXCR7 to endothelial cell (EC) proliferation. We demonstrate that CXCR7 expression is sufficient to drive post-confluent growth in EC cultures. Further, we provide a novel mechanism for CXCR7-mediated proliferation via proteasomal degradation of the tumor suppressor protein Rb. These findings identify a heretofore unappreciated role for CXCR7 in vascular dysfunction and confirm this receptor as a plausible target for anti-tumor therapy.


Assuntos
Células Endoteliais/citologia , Receptores CXCR/metabolismo , Proteína do Retinoblastoma/metabolismo , Proliferação de Células , Células Cultivadas , Células Endoteliais/metabolismo , Endotélio Linfático/citologia , Endotélio Linfático/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Humanos , Ligantes , Mutação , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Análise Serial de Proteínas , Receptores CXCR/antagonistas & inibidores , Receptores CXCR/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA