Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Eur J Nucl Med Mol Imaging ; 51(4): 1012-1022, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37955791

RESUMO

PURPOSE: Aging is a major societal concern due to age-related functional losses. Synapses are crucial components of neural circuits, and synaptic density could be a sensitive biomarker to evaluate brain function. [11C]UCB-J is a positron emission tomography (PET) ligand targeting synaptic vesicle glycoprotein 2A (SV2A), which can be used to evaluate brain synaptic density in vivo. METHODS: We evaluated age-related changes in gray matter synaptic density, volume, and blood flow using [11C]UCB-J PET and magnetic resonance imaging (MRI) in a wide age range of 80 cognitive normal subjects (21-83 years old). Partial volume correction was applied to the PET data. RESULTS: Significant age-related decreases were found in 13, two, and nine brain regions for volume, synaptic density, and blood flow, respectively. The prefrontal cortex showed the largest volume decline (4.9% reduction per decade: RPD), while the synaptic density loss was largest in the caudate (3.6% RPD) and medial occipital cortex (3.4% RPD). The reductions in caudate are consistent with previous SV2A PET studies and likely reflect that caudate is the site of nerve terminals for multiple major tracts that undergo substantial age-related neurodegeneration. There was a non-significant negative relationship between volume and synaptic density reductions in 16 gray matter regions. CONCLUSION: MRI and [11]C-UCB-J PET showed age-related decreases of gray matter volume, synaptic density, and blood flow; however, the regional patterns of the reductions in volume and SV2A binding were different. Those patterns suggest that MR-based measures of GM volume may not be directly representative of synaptic density.


Assuntos
Substância Cinzenta , Glicoproteínas de Membrana , Humanos , Idoso de 80 Anos ou mais , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Glicoproteínas de Membrana/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Sinapses/metabolismo
2.
Am J Geriatr Psychiatry ; 32(1): 17-28, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37673749

RESUMO

OBJECTIVE: Multimodal imaging techniques have furthered our understanding of how different aspects of Alzheimer's disease (AD) pathology relate to one another. Diffusion tensor imaging (DTI) measures such as mean diffusivity (MD) may be a surrogate measure of the changes in gray matter structure associated with AD. Positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A) has been used to quantify synaptic loss, which is the major pathological correlate of cognitive impairment in AD. In this study, we investigated the relationship between gray matter microstructure and synaptic density. METHODS: DTI was used to measure MD and [11C]UCB-J PET to measure synaptic density in 33 amyloid-positive participants with AD and 17 amyloid-negative cognitively normal (CN) participants aged 50-83. Univariate regression analyses were used to assess the association between synaptic density and MD in both the AD and CN groups. RESULTS: Hippocampal MD was inversely associated with hippocampal synaptic density in participants with AD (r = -0.55, p <0.001, df = 31) but not CN (r = 0.13, p = 0.62, df = 15). Exploratory analyses across other regions known to be affected in AD suggested widespread inverse associations between synaptic density and MD in the AD group. CONCLUSION: In the setting of AD, an increase in gray matter MD is inversely associated with synaptic density. These co-occurring changes may suggest a link between synaptic loss and gray matter microstructural changes in AD. Imaging studies of gray matter microstructure and synaptic density may allow important insights into AD-related neuropathology.


Assuntos
Doença de Alzheimer , Substância Branca , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Imagem de Tensor de Difusão , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Tomografia por Emissão de Pósitrons/métodos , Imagem Multimodal , Encéfalo/metabolismo , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Glicoproteínas de Membrana , Proteínas do Tecido Nervoso/metabolismo
3.
Eur J Nucl Med Mol Imaging ; 50(7): 2081-2099, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36849748

RESUMO

PURPOSE: Currently, there are multiple active clinical trials involving poly(ADP-ribose) polymerase (PARP) inhibitors in the treatment of glioblastoma. The noninvasive quantification of baseline PARP expression using positron emission tomography (PET) may provide prognostic information and lead to more precise treatment. Due to the lack of brain-penetrant PARP imaging agents, the reliable and accurate in vivo quantification of PARP in the brain remains elusive. Herein, we report the synthesis of a brain-penetrant PARP PET tracer, (R)-2-(2-methyl-1-(methyl-11C)pyrrolidin-2-yl)-1H-benzo[d]imidazole-4-carboxamide ([11C]PyBic), and its preclinical evaluations in a syngeneic RG2 rat glioblastoma model and healthy nonhuman primates. METHODS: We synthesized [11C]PyBic using veliparib as the labeling precursor, performed dynamic PET scans on RG2 tumor-bearing rats and calculated the distribution volume ratio (DVR) using simplified reference region method 2 (SRTM2) with the contralateral nontumor brain region as the reference region. We performed biodistribution studies, western blot, and immunostaining studies to validate the in vivo PET quantification results. We characterized the brain kinetics and binding specificity of [11C]PyBic in nonhuman primates on FOCUS220 scanner and calculated the volume of distribution (VT), nondisplaceable volume of distribution (VND), and nondisplaceable binding potential (BPND) in selected brain regions. RESULTS: [11C]PyBic was synthesized efficiently in one step, with greater than 97% radiochemical and chemical purity and molar activity of 148 ± 85 MBq/nmol (n = 6). [11C]PyBic demonstrated PARP-specific binding in RG2 tumors, with 74% of tracer binding in tumors blocked by preinjected veliparib (i.v., 5 mg/kg). The in vivo PET imaging results were corroborated by ex vivo biodistribution, PARP1 immunohistochemistry and immunoblotting data. Furthermore, brain penetration of [11C]PyBic was confirmed by quantitative monkey brain PET, which showed high specific uptake (BPND > 3) and low nonspecific uptake (VND < 3 mL/cm3) in the monkey brain. CONCLUSION: [11C]PyBic is the first brain-penetrant PARP PET tracer validated in a rat glioblastoma model and healthy nonhuman primates. The brain kinetics of [11C]PyBic are suitable for noninvasive quantification of available PARP binding in the brain, which posits [11C]PyBic to have broad applications in oncology and neuroimaging.


Assuntos
Glioblastoma , Ratos , Animais , Glioblastoma/diagnóstico por imagem , Glioblastoma/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Distribuição Tecidual , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Primatas
4.
Neuroimage ; 252: 119031, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35257856

RESUMO

Head motion during PET scans causes image quality degradation, decreased concentration in regions with high uptake and incorrect outcome measures from kinetic analysis of dynamic datasets. Previously, we proposed a data-driven method, center of tracer distribution (COD), to detect head motion without an external motion tracking device. There, motion was detected using one dimension of the COD trace with a semiautomatic detection algorithm, requiring multiple user defined parameters and manual intervention. In this study, we developed a new data-driven motion detection algorithm, which is automatic, self-adaptive to noise level, does not require user-defined parameters and uses all three dimensions of the COD trace (3DCOD). 3DCOD was first validated and tested using 30 simulation studies (18F-FDG, N = 15; 11C-raclopride (RAC), N = 15) with large motion. The proposed motion correction method was tested on 22 real human datasets, with 20 acquired from a high resolution research tomograph (HRRT) scanner (18F-FDG, N = 10; 11C-RAC, N = 10) and 2 acquired from the Siemens Biograph mCT scanner. Real-time hardware-based motion tracking information (Vicra) was available for all real studies and was used as the gold standard. 3DCOD was compared to Vicra, no motion correction (NMC), one-direction COD (our previous method called 1DCOD) and two conventional frame-based image registration (FIR) algorithms, i.e., FIR1 (based on predefined frames reconstructed with attenuation correction) and FIR2 (without attenuation correction) for both simulation and real studies. For the simulation studies, 3DCOD yielded -2.3 ± 1.4% (mean ± standard deviation across all subjects and 11 brain regions) error in region of interest (ROI) uptake for 18F-FDG (-3.4 ± 1.7% for 11C-RAC across all subjects and 2 regions) as compared to Vicra (perfect correction) while NMC, FIR1, FIR2 and 1DCOD yielded -25.4 ± 11.1% (-34.5 ± 16.1% for 11C- RAC), -13.4 ± 3.5% (-16.1 ± 4.6%), -5.7 ± 3.6% (-8.0 ± 4.5%) and -2.6 ± 1.5% (-5.1 ± 2.7%), respectively. For real HRRT studies, 3DCOD yielded -0.3 ± 2.8% difference for 18F-FDG (-0.4 ± 3.2% for 11C-RAC) as compared to Vicra while NMC, FIR1, FIR2 and 1DCOD yielded -14.9 ± 9.0% (-24.5 ± 14.6%), -3.6 ± 4.9% (-13.4 ± 14.3%), -0.6 ± 3.4% (-6.7 ± 5.3%) and -1.5 ± 4.2% (-2.2 ± 4.1%), respectively. In summary, the proposed motion correction method yielded comparable performance to the hardware-based motion tracking method for multiple tracers, including very challenging cases with large frequent head motion, in studies performed on a non-TOF scanner.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia por Emissão de Pósitrons , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Cinética , Movimento (Física) , Movimento , Tomografia por Emissão de Pósitrons/métodos
5.
Neuroimage ; 264: 119678, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36261057

RESUMO

Head motion presents a continuing problem in brain PET studies. A wealth of motion correction (MC) algorithms had been proposed in the past, including both hardware-based methods and data-driven methods. However, in most real brain PET studies, in the absence of ground truth or gold standard of motion information, it is challenging to objectively evaluate MC quality. For MC evaluation, image-domain metrics, e.g., standardized uptake value (SUV) change before and after MC are commonly used, but this measure lacks objectivity because 1) other factors, e.g., attenuation correction, scatter correction and parameters used in the reconstruction, will confound MC effectiveness; 2) SUV only reflects final image quality, and it cannot precisely inform when an MC method performed well or poorly during the scan time period; 3) SUV is tracer-dependent and head motion may cause increases or decreases in SUV for different tracers, so evaluating MC effectiveness is complicated. Here, we present a new algorithm, i.e., motion corrected centroid-of-distribution (MCCOD) to perform objective quality control for measured or estimated rigid motion information. MCCOD is a three-dimensional surrogate trace of the center of tracer distribution after performing rigid MC using the existing motion information. MCCOD is used to inform whether the motion information is accurate, using the PET raw data only, i.e., without PET image reconstruction, where inaccurate motion information typically leads to abrupt changes in the MCCOD trace. MCCOD was validated using simulation studies and was tested on real studies acquired from both time-of-flight (TOF) and non-TOF scanners. A deep learning-based brain mask segmentation was implemented, which is shown to be necessary for non-TOF MCCOD generation. MCCOD is shown to be effective in detecting abrupt translation motion errors in slowly varying tracer distribution caused by the motion tracking hardware and can be used to compare different motion estimation methods as well as to improve existing motion information.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia por Emissão de Pósitrons , Humanos , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Movimento (Física) , Algoritmos , Encéfalo/diagnóstico por imagem
6.
Eur J Nucl Med Mol Imaging ; 49(11): 3679-3691, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35633376

RESUMO

PURPOSE: Exploring synaptic density changes during brain growth is crucial to understanding brain development. Previous studies in nonhuman primates report a rapid increase in synapse number between the late gestational period and the early neonatal period, such that synaptic density approaches adult levels by birth. Prenatal synaptic development may have an enduring impact on postnatal brain development, but precisely how synaptic density changes in utero are unknown because current methods to quantify synaptic density are invasive and require post-mortem brain tissue. METHODS: We used synaptic vesicle glycoprotein 2A (SV2A) positron emission tomography (PET) radioligands [11C]UCB-J and [18F]Syn-VesT-1 to conduct the first assessment of synaptic density in the developing fetal brain in gravid rhesus monkeys. Eight pregnant monkeys were scanned twice during the third trimester at two imaging sites. Fetal post-mortem samples were collected near term in a subset of subjects to quantify SV2A density by Western blot. RESULTS: Image-derived fetal brain SV2A measures increased during the third trimester. SV2A concentrations were greater in subcortical regions than in cortical regions at both gestational ages. Near term, SV2A density was higher in primary motor and visual areas than respective associative regions. Post-mortem quantification of SV2A density was significantly correlated with regional SV2A PET measures. CONCLUSION: While further study is needed to determine the exact relationship of SV2A and synaptic density, the imaging paradigm developed in the current study allows for the effective in vivo study of SV2A development in the fetal brain.


Assuntos
Encéfalo , Glicoproteínas de Membrana , Proteínas do Tecido Nervoso , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Macaca mulatta/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Tomografia por Emissão de Pósitrons/métodos
7.
Eur J Nucl Med Mol Imaging ; 49(9): 3086-3097, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35277742

RESUMO

A novel deep learning (DL)-based attenuation correction (AC) framework was applied to clinical whole-body oncology studies using 18F-FDG, 68 Ga-DOTATATE, and 18F-Fluciclovine. The framework used activity (λ-MLAA) and attenuation (µ-MLAA) maps estimated by the maximum likelihood reconstruction of activity and attenuation (MLAA) algorithm as inputs to a modified U-net neural network with a novel imaging physics-based loss function to learn a CT-derived attenuation map (µ-CT). METHODS: Clinical whole-body PET/CT datasets of 18F-FDG (N = 113), 68 Ga-DOTATATE (N = 76), and 18F-Fluciclovine (N = 90) were used to train and test tracer-specific neural networks. For each tracer, forty subjects were used to train the neural network to predict attenuation maps (µ-DL). µ-DL and µ-MLAA were compared to the gold-standard µ-CT. PET images reconstructed using the OSEM algorithm with µ-DL (OSEMDL) and µ-MLAA (OSEMMLAA) were compared to the CT-based reconstruction (OSEMCT). Tumor regions of interest were segmented by two radiologists and tumor SUV and volume measures were reported, as well as evaluation using conventional image analysis metrics. RESULTS: µ-DL yielded high resolution and fine detail recovery of the attenuation map, which was superior in quality as compared to µ-MLAA in all metrics for all tracers. Using OSEMCT as the gold-standard, OSEMDL provided more accurate tumor quantification than OSEMMLAA for all three tracers, e.g., error in SUVmax for OSEMMLAA vs. OSEMDL: - 3.6 ± 4.4% vs. - 1.7 ± 4.5% for 18F-FDG (N = 152), - 4.3 ± 5.1% vs. 0.4 ± 2.8% for 68 Ga-DOTATATE (N = 70), and - 7.3 ± 2.9% vs. - 2.8 ± 2.3% for 18F-Fluciclovine (N = 44). OSEMDL also yielded more accurate tumor volume measures than OSEMMLAA, i.e., - 8.4 ± 14.5% (OSEMMLAA) vs. - 3.0 ± 15.0% for 18F-FDG, - 14.1 ± 19.7% vs. 1.8 ± 11.6% for 68 Ga-DOTATATE, and - 15.9 ± 9.1% vs. - 6.4 ± 6.4% for 18F-Fluciclovine. CONCLUSIONS: The proposed framework provides accurate and robust attenuation correction for whole-body 18F-FDG, 68 Ga-DOTATATE and 18F-Fluciclovine in tumor SUV measures as well as tumor volume estimation. The proposed method provides clinically equivalent quality as compared to CT in attenuation correction for the three tracers.


Assuntos
Aprendizado Profundo , Neoplasias , Fluordesoxiglucose F18 , Humanos , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Cintilografia , Compostos Radiofarmacêuticos
8.
Mol Psychiatry ; 26(12): 7690-7698, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34135473

RESUMO

Decreased synaptic spine density has been the most consistently reported postmortem finding in schizophrenia (SCZ). A recently developed in vivo measure of synaptic vesicle density estimated using the novel positron emission tomography (PET) ligand [11C]UCB-J is a proxy measure of synaptic density. In this study we determined whether [11C]UCB-J binding, an in vivo measure of synaptic vesicle density, is altered in SCZ. SCZ patients (n = 13, 3 F) and age-, gender-matched healthy controls (HCs) (n = 15, 3 F) underwent PET imaging using [11C]UCB-J and high-resolution research tomography (HRRT). [11C]UCB-J distribution volume (VT) and binding potential (BPND) were estimated using a 1T model with centrum-semiovale as the reference region. Relative to HCs, SCZ patients, showed significantly lower [11C]UCB-J BPND with significant differences in the frontal cortex (-10%, Cohen's d = 1.01), anterior cingulate (-11%, Cohen's d = 1.24), hippocampus (-15%, Cohen's d = 1.29), occipital cortex (-14%, Cohen's d = 1.34), parietal cortex (-10%, p = 0.03, Cohen's d = 0.85) and temporal cortex (-11%, Cohen's d = 1.23). These differences remained significant after partial volume correction. [11C]UCB-J BPND did not correlate with cumulative antipsychotic exposure or gray-matter volume. Consistent with the postmortem and in vivo findings, synaptic vesicle density is lower across several brain regions in SCZ. Frontal synaptic vesicle density correlated with psychosis symptom severity and cognitive performance on social cognition and processing speed. These findings indicate that [11C]UCB-J PET is a sensitive tool to detect lower synaptic density in SCZ and holds promise for future studies of early detection and disease progression.


Assuntos
Esquizofrenia , Vesículas Sinápticas , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/metabolismo , Vesículas Sinápticas/metabolismo
9.
Addict Biol ; 27(2): e13123, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34852401

RESUMO

Preclinical studies have revealed robust and long-lasting alterations in dendritic spines in the brain following cocaine exposure. Such alterations are hypothesized to underlie enduring maladaptive behaviours observed in cocaine use disorder (CUD). The current study explored whether synaptic density is altered in CUD. Fifteen individuals with DSM-5 CUD and 15 demographically matched healthy control (HC) subjects participated in a single 11 C-UCB-J positron emission tomography scan to assess density of synaptic vesicle glycoprotein 2A (SV2A). The volume of distribution (VT ) and the plasma-free fraction-corrected form of the total volume of distribution (VT /fP ) were analysed in the anterior cingulate cortex (ACC), dorsomedial and ventromedial prefrontal cortex (PFC), lateral and medial orbitofrontal cortex (OFC) and ventral striatum. A significant diagnostic-group-by-region interaction was observed for VT and VT /fP . Post hoc analyses revealed no differences on VT , while for VT /fP showed lower values in CUD as compared with HC subjects in the ACC (-10.9%, p = 0.02), ventromedial PFC (-9.9%, p = 0.02) and medial OFC (-9.9%, p = 0.04). Regional VT /fP values in CUD, though unrelated to measures of lifetime cocaine use, were positively correlated with the frequency of recent cocaine use (p = 0.02-0.03) and negatively correlated with cocaine abstinence (p = 0.008-0.03). These findings provide initial preliminary in vivo evidence of altered (lower) synaptic density in the PFC of humans with CUD. Cross-sectional variation in SV2A availability as a function of recent cocaine use and abstinence suggests that synaptic density may be dynamically and plastically regulated by acute cocaine, an observation that merits direct testing by studies using more definitive longitudinal designs.


Assuntos
Cocaína , Vesículas Sinápticas , Encéfalo/metabolismo , Cocaína/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/metabolismo , Piridinas/metabolismo , Vesículas Sinápticas/metabolismo
10.
Alzheimers Dement ; 18(12): 2527-2536, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35174954

RESUMO

INTRODUCTION: For 30 years synapse loss has been referred to as the major pathological correlate of cognitive impairment in Alzheimer's disease (AD). However, this statement is based on remarkably few patients studied by autopsy or biopsy. With the recent advent of synaptic vesicle glycoprotein 2A (SV2A) positron emission tomography (PET) imaging, we have begun to evaluate the consequences of synaptic alterations in vivo. METHODS: We examined the relationship between synaptic density measured by [11 C]UCB-J PET and neuropsychological test performance in 45 participants with early AD. RESULTS: Global synaptic density showed a significant positive association with global cognition and performance on five individual cognitive domains in participants with early AD. Synaptic density was a stronger predictor of cognitive performance than gray matter volume. CONCLUSION: These results confirm neuropathologic studies demonstrating a significant association between synaptic density and cognitive performance, and suggest that this correlation extends to the early stages of AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Tomografia por Emissão de Pósitrons/métodos , Sinapses/patologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Cognição , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
11.
Clin Infect Dis ; 73(8): 1404-1411, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34050746

RESUMO

BACKGROUND: Synaptic injury is a pathological hallmark of neurological impairment in people living with human immunodeficiency virus (HIV, PLWH), a common complication despite viral suppression with antiretroviral therapy (ART). Measurement of synaptic density in living humans may allow better understanding of HIV neuropathogenesis and provide a dynamic biomarker for therapeutic studies. We applied novel synaptic vesical protein 2A (SV2A) positron emission tomographic (PET) imaging to investigate synaptic density in the frontostriatalthalamic region in PLWH and HIV-uninfected participants. METHODS: In this cross-sectional pilot study,13 older male PLWH on ART underwent magnetic resonance imaging (MRI) and PET scanning with the SV2A ligand [11C]UCB-J with partial volume correction and had neurocognitive assessments. SV2A binding potential (BPND) in the frontostriatalthalamic circuit was compared to 13 age-matched HIV-uninfected participants and assessed with respect to neurocognitive performance in PLWH. RESULTS: PLWH had 14% lower frontostriatalthalamic SV2A synaptic density compared to HIV-uninfected (PLWH: mean [SD], 3.93 [0.80]; HIV-uninfected: 4.59 [0.43]; P = .02, effect size 1.02). Differences were observed in widespread additional regions in exploratory analyses. Higher frontostriatalthalamic SV2A BPND associated with better grooved pegboard performance, a measure of motor coordination, in PLWH (r = 0.61, P = .03). CONCLUSIONS: In a pilot study, SV2A PET imaging reveals reduced synaptic density in older male PLWH on ART compared to HIV-uninfected in the frontostriatalthalamic circuit and other cortical areas. Larger studies controlling for factors in addition to age are needed to determine whether differences are attributable to HIV or comorbidities in PLWH. SV2A imaging is a promising biomarker for studies of neuropathogenesis and therapeutic interventions in HIV.


Assuntos
Infecções por HIV , Tomografia por Emissão de Pósitrons , Idoso , Estudos Transversais , HIV , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Humanos , Masculino , Projetos Piloto
12.
Neuroimage ; 238: 118248, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34119639

RESUMO

PURPOSE: 11C-UCB-J PET imaging, targeting synaptic vesicle glycoprotein 2A (SV2A), has been shown to be a useful indicator of synaptic density in Alzheimer's disease (AD). For SV2A imaging, a decrease in apparent tracer uptake is often due to the combination of gray-matter (GM) atrophy and SV2A decrease in the remaining tissue. Our aim is to reveal the true SV2A change by performing partial volume correction (PVC). METHODS: We performed two PVC algorithms, Müller-Gärtner (MG) and 'iterative Yang' (IY), on 17 AD participants and 11 cognitive normal (CN) participants using the brain-dedicated HRRT scanner. Distribution volume VT, the rate constant K1, binding potential BPND (centrum semiovale as reference region), and tissue volume were compared. RESULTS: In most regions, both PVC algorithms reduced the between-group differences. Alternatively, in hippocampus, IY increased the significance of between-group differences while MG reduced it (VT, BPND and K1 group differences: uncorrected: 20%, 27%, 17%; MG: 18%, 22%, 14%; IY: 22%, 28%, 17%). The group difference in hippocampal volume (10%) was substantially smaller than any PET measures. MG increased GM binding values to a greater extent than IY due to differences in algorithm assumptions. CONCLUSION: 11C-UCB-J binding is significantly reduced in AD hippocampus, but PVC is important to adjust for significant volume reduction. After correction, PET measures are substantially more sensitive to group differences than volumetric MRI measures. Assumptions of each PVC algorithm are important and should be carefully examined and validated. For 11C-UCB-J, the less stringent assumptions of IY support its use as a PVC algorithm over MG.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Circulação Cerebrovascular/fisiologia , Humanos , Compostos Radiofarmacêuticos
13.
Neuroimage ; 237: 118167, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34000404

RESUMO

BACKGROUND: The human brain is inherently organized into distinct networks, as reported widely by resting-state functional magnetic resonance imaging (rs-fMRI), which are based on blood-oxygen-level-dependent (BOLD) signal fluctuations. 11C-UCB-J PET maps synaptic density via synaptic vesicle protein 2A, which is a more direct structural measure underlying brain networks than BOLD rs-fMRI. METHODS: The aim of this study was to identify maximally independent brain source networks, i.e., "spatial patterns with common covariance across subjects", in 11C-UCB-J data using independent component analysis (ICA), a data-driven analysis method. Using a population of 80 healthy controls, we applied ICA to two 40-sample subsets and compared source network replication across samples. We examined the identified source networks at multiple model orders, as the ideal number of maximally independent components (IC) is unknown. In addition, we investigated the relationship between the strength of the loading weights for each source network and age and sex. RESULTS: Thirteen source networks replicated across both samples. We determined that a model order of 18 components provided stable, replicable components, whereas estimations above 18 were not stable. Effects of sex were found in two ICs. Nine ICs showed age-related change, with 4 remaining significant after correction for multiple comparison. CONCLUSION: This study provides the first evidence that human brain synaptic density can be characterized into organized covariance patterns. Furthermore, we demonstrated that multiple synaptic density source networks are associated with age, which supports the potential utility of ICA to identify biologically relevant synaptic density source networks.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Glicoproteínas de Membrana/metabolismo , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Sinapses/metabolismo , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/normas , Piridinas/farmacocinética , Pirrolidinonas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Reprodutibilidade dos Testes , Fatores Sexuais , Processamento de Sinais Assistido por Computador , Adulto Jovem
14.
Ann Neurol ; 87(3): 329-338, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31953875

RESUMO

OBJECTIVE: Parkinson disease is characterized by motor and nonmotor symptoms, reduced striatal dopamine signaling, and loss of dopamine neurons in the substantia nigra. It is now known that the pathological process in Parkinson disease may begin decades before the clinical diagnosis and include a variety of neuronal alterations in addition to the dopamine system. METHODS: This study examined the density of all synapses with synaptic vesicle glycoprotein 2A (SV2A) in Parkinson disease subjects with mild bilateral disease (n = 12) and matched normal controls (n = 12) using in vivo high-resolution positron emission tomographic imaging as well as postmortem autoradiography in an independent sample with Parkinson disease (n = 15) and normal controls (n = 13) in the substantia nigra and putamen. RESULTS: A group-by-brain region interaction effect (F10, 22 = 3.52, p = 0.007) was observed in the primary brain areas with in vivo SV2A binding. Post hoc analyses revealed that the Parkinson disease group exhibited lower SV2A in the substantia nigra (-45%; p < 0.001), red nucleus (-31%; p = 0.03), and locus coeruleus (-17%; p = 0.03). Exploratory analyses also revealed lower SV2A binding in clinically relevant cortical areas. Using autoradiography, we confirmed lower SV2A in the substantia nigra (-17%; p < 0.005) and nonsignificant findings in the putamen (-4%; p = 0.06). INTERPRETATION: This work provides the first evidence of synaptic loss in brainstem nuclei involved in the pathogenesis of Parkinson disease in living patients. SV2A imaging holds promise for understanding synaptic changes central to the disease. Ann Neurol 2020;87:329-338.


Assuntos
Diagnóstico Precoce , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia , Putamen/patologia , Substância Negra/patologia , Sinapses/patologia , Autorradiografia , Estudos de Casos e Controles , Feminino , Neuroimagem Funcional , Humanos , Locus Cerúleo/patologia , Masculino , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Tomografia por Emissão de Pósitrons , Putamen/metabolismo , Piridinas , Pirrolidinas , Núcleo Rubro/patologia , Substância Negra/metabolismo
15.
Eur J Nucl Med Mol Imaging ; 47(8): 1833-1842, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31781832

RESUMO

PURPOSE: 18F-fluoromisonidazole (18F-FMISO) is the most widely used positron emission tomography (PET) tracer for imaging tumor hypoxia. Previous reports suggested that the time from injection to the scan may affect the assessment of 18F-FMISO uptake. Herein, we directly compared the images at 2 h and 4 h after a single injection of 18F-FMISO. METHODS: Twenty-three patients with or suspected of having a brain tumor were scanned twice at 2 and 4 h following an intravenous injection of 18F-FMISO. We estimated the mean standardized uptake value (SUV) of the gray matter and white matter and the gray-to-white matter ratio in the background brain tissue from the two scans. We also performed a semi-quantitative analysis using the SUVmax and maximum tumor-to-normal ratio (TNR) for the tumor. RESULTS: At 2 h, the SUVmean of gray matter was significantly higher than that of white matter (median 1.23, interquartile range (IQR) 1.10-1.32 vs. 1.04, IQR 0.95-1.16, p < 0.0001), whereas at 4 h, it significantly decreased to approach that of the white matter (1.10, IQR 1.00-1.23 vs. 1.02, IQR 0.93-1.13, p = NS). The gray-to-white matter ratio thus significantly declined from 1.17 (IQR 1.14-1.19) to 1.09 (IQR 1.07-1.10) (p < 0.0001). All 7 patients with glioblastoma showed significant increases in the SUVmax (2.20, IQR 1.67-3.32 at 2 h vs. 2.65, IQR 1.74-4.41 at 4 h, p = 0.016) and the TNR (1.75, IQR 1.40-2.38 at 2 h vs. 2.34, IQR 1.67-3.60 at 4 h, p = 0.016). CONCLUSION: In the assessment of hypoxic tumors, 18F-FMISO PET for hypoxia imaging should be obtained at 4 h rather than 2 h after the injection.


Assuntos
Glioblastoma , Misonidazol , Glioblastoma/diagnóstico por imagem , Humanos , Hipóxia/diagnóstico por imagem , Misonidazol/análogos & derivados , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos
16.
Epilepsia ; 61(10): 2183-2193, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32944949

RESUMO

OBJECTIVE: In this positron emission tomography (PET) study with [11 C]UCB-J, we evaluated synaptic vesicle glycoprotein 2A (SV2A) binding, which is decreased in resected brain tissues from epilepsy patients, in subjects with temporal lobe epilepsy (TLE) and compared the regional binding pattern to [18 F]fluorodeoxyglucose (FDG) uptake. METHODS: Twelve TLE subjects and 12 control subjects were examined. Regional [11 C]UCB-J binding potential (BPND ) values were estimated using the centrum semiovale as a reference region. [18 F]FDG uptake in TLE subjects was quantified using mean radioactivity values. Asymmetry in outcome measures was assessed by comparison of ipsilateral and contralateral regions. Partial volume correction (PVC) with the iterative Yang algorithm was applied based on the FreeSurfer segmentation. RESULTS: In 11 TLE subjects with medial temporal lobe sclerosis (MTS), the hippocampal volumetric asymmetry was 25 ± 11%. After PVC, [11 C]UCB-J BPND asymmetry indices were 37 ± 19% in the hippocampus, with very limited asymmetry in other brain regions. Reductions in [11 C]UCB-J BPND values were restricted to the sclerotic hippocampus when compared to control subjects. The corresponding asymmetry in hippocampal [18 F]FDG uptake was 22 ± 7% and correlated with that of [11 C]UCB-J BPND across subjects (R2  = .38). Hippocampal asymmetries in [11 C]UCB-J binding were 1.7-fold larger than those of [18 F]FDG uptake. SIGNIFICANCE: [11 C]UCB-J binding is reduced in the seizure onset zone of TLE subjects with MTS. PET imaging of SV2A may be a promising biomarker approach in the presurgical selection and evaluation of TLE patients and may improve the sensitivity of molecular imaging for seizure focus detection.


Assuntos
Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Piridinas/metabolismo , Pirrolidinonas/metabolismo , Adulto , Radioisótopos de Carbono/metabolismo , Feminino , Fluordesoxiglucose F18/metabolismo , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Ligação Proteica/fisiologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/metabolismo , Adulto Jovem
17.
Alzheimers Dement ; 16(7): 974-982, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32400950

RESUMO

INTRODUCTION: Synaptic loss is a robust and consistent pathology in Alzheimer's disease (AD) and the major structural correlate of cognitive impairment. Positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A) has emerged as a promising biomarker of synaptic density. METHODS: We measured SV2A binding in 34 participants with early AD and 19 cognitively normal (CN) participants using [11 C]UCB-J PET and a cerebellar reference region for calculation of the distribution volume ratio. RESULTS: We observed widespread reductions of SV2A binding in medial temporal and neocortical brain regions in early AD compared to CN participants. These reductions were largely maintained after correction for volume loss and were more extensive than decreases in gray matter volume. CONCLUSION: We were able to measure widespread synaptic loss due to AD using [11 C]UCB-J PET. Future studies will continue to evaluate the utility of SV2A PET for tracking AD progression and for monitoring potential therapies.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sinapses/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Biomarcadores , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Tomografia por Emissão de Pósitrons
18.
Eur J Nucl Med Mol Imaging ; 44(4): 611-619, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27752745

RESUMO

PURPOSE: Metabolic activity and hypoxia are both important factors characterizing tumor aggressiveness. Here, we used F-18 fluoromisonidazole (FMISO) and F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) to define metabolically active hypoxic volume, and investigate its clinical significance in relation to progression free survival (PFS) and overall survival (OS) in glioblastoma patients. EXPERIMENTAL DESIGN: Glioblastoma patients (n = 32) underwent FMISO PET, FDG PET, and magnetic resonance imaging (MRI) before surgical intervention. FDG and FMISO PET images were coregistered with gadolinium-enhanced T1-weighted MR images. Volume of interest (VOI) of gross tumor volume (GTV) was manually created to enclose the entire gadolinium-positive areas. The FMISO tumor-to-normal region ratio (TNR) and FDG TNR were calculated in a voxel-by-voxel manner. For calculating TNR, standardized uptake value (SUV) was divided by averaged SUV of normal references. Contralateral frontal and parietal cortices were used as the reference region for FDG, whereas the cerebellar cortex was used as the reference region for FMISO. FDG-positive was defined as the FDG TNR ≥1.0, and FMISO-positive was defined as FMISO TNR ≥1.3. Hypoxia volume (HV) was defined as the volume of FMISO-positive and metabolic tumor volume in hypoxia (hMTV) was the volume of FMISO/FDG double-positive. The total lesion glycolysis in hypoxia (hTLG) was hMTV × FDG SUVmean. The extent of resection (EOR) involving cytoreduction surgery was volumetric change based on planimetry methods using MRI. These factors were tested for correlation with patient prognosis. RESULTS: All tumor lesions were FMISO-positive and FDG-positive. Univariate analysis indicated that hMTV, hTLG, and EOR were significantly correlated with PFS (p = 0.007, p = 0.04, and p = 0.01, respectively) and that hMTV, hTLG, and EOR were also significantly correlated with OS (p = 0.0028, p = 0.037, and p = 0.014, respectively). In contrast, none of FDG TNR, FMISO TNR, GTV, HV, patients' age, or Karnofsky performance scale (KPS) was significantly correlated with PSF or OS. The hMTV and hTLG were found to be independent factors affecting PFS and OS on multivariate analysis. CONCLUSIONS: We introduced hMTV and hTLG using FDG and FMISO PET to define metabolically active hypoxic volume. Univariate and multivariate analyses demonstrated that both hMTV and hTLG are significant predictors for PFS and OS in glioblastoma patients.


Assuntos
Glicemia/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Oxigênio/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Adulto , Idoso , Neoplasias Encefálicas/metabolismo , Hipóxia Celular , Feminino , Fluordesoxiglucose F18 , Glioblastoma/metabolismo , Glicólise , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Misonidazol/análogos & derivados , Compostos Radiofarmacêuticos
19.
J Nucl Cardiol ; 24(1): 329-331, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27071998

RESUMO

18F-fluoromisonidazole (FMISO) is a positron emission tomography (PET) tracer that accumulates in hypoxic tissues. We here present a case of suspected cardiac sarcoidosis which was detected with increased FMISO uptake.


Assuntos
Cardiomiopatias/diagnóstico por imagem , Misonidazol/análogos & derivados , Tomografia por Emissão de Pósitrons/métodos , Sarcoidose/diagnóstico por imagem , Imagem Corporal Total/métodos , Idoso , Diagnóstico Diferencial , Feminino , Humanos , Compostos Radiofarmacêuticos
20.
Eur J Nucl Med Mol Imaging ; 43(8): 1469-76, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26841941

RESUMO

PURPOSE: Tumor necrosis is one of the indicators of tumor aggressiveness. (18)F-fluoromisonidazole (FMISO) is the most widely used positron emission tomography (PET) tracer to evaluate severe hypoxia in vivo. Because severe hypoxia causes necrosis, we hypothesized that intratumoral necrosis can be detected by FMISO PET in brain tumors regardless of their histopathology. We applied FMISO PET to various types of brain tumors before tumor resection and evaluated the correlation between histopathological necrosis and FMISO uptake. METHODS: This study included 59 brain tumor patients who underwent FMISO PET/computed tomography before any treatments. According to the pathological diagnosis, the brain tumors were divided into three groups: astrocytomas (group 1), neuroepithelial tumors except for astrocytomas (group 2), and others (group 3). Two experienced neuropathologists evaluated the presence of necrosis in consensus. FMISO uptake in the tumor was evaluated visually and semi-quantitatively using the tumor-to-normal cerebellum ratio (TNR). RESULTS: In visual analyses, 26/27 cases in the FMISO-positive group presented with necrosis, whereas 28/32 cases in the FMISO-negative group did not show necrosis. Mean TNRs with and without necrosis were 3.49 ± 0.97 and 1.43 ± 0.42 (p < 0.00001) in group 1, 2.91 ± 0.83 and 1.44 ± 0.20 (p < 0.005) in group 2, and 2.63 ± 1.16 and 1.35 ± 0.23 (p < 0.05) in group 3, respectively. Using a cut-off value of TNR = 1.67, which was calculated by normal reference regions of interest, we could predict necrosis with sensitivity, specificity, and accuracy of 96.7, 93.1, and 94.9 %, respectively. CONCLUSIONS: FMISO uptake within the lesion indicated the presence of histological micro-necrosis. When we used a TNR of 1.67 as the cut-off value, intratumoral micro-necrosis was sufficiently predictable. Because the presence of necrosis implies a poor prognosis, our results suggest that FMISO PET could provide important information for treatment decisions or surgical strategies of any type of brain tumor.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Misonidazol/análogos & derivados , Tomografia por Emissão de Pósitrons , Adulto , Idoso , Idoso de 80 Anos ou mais , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Necrose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA