Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Environ Microbiol ; 25(3): 705-720, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36529539

RESUMO

Extracellular electron transfer (EET) by electroactive bacteria in anoxic soils and sediments is an intensively researched subject, but EET's function in planktonic ecology has been less considered. Following the discovery of an unexpectedly high prevalence of EET genes in a bog lake's bacterioplankton, we hypothesized that the redox capacities of dissolved organic matter (DOM) enrich for electroactive bacteria by mediating redox chemistry. We developed the bioinformatics pipeline FEET (Find EET) to identify and summarize predicted EET protein-encoding genes from metagenomics data. We then applied FEET to 36 bog and thermokarst lakes and correlated gene occurrence with environmental data to test our predictions. Our results provide indirect evidence that DOM may participate in bacterioplankton EET. We found a similarly high prevalence of genes encoding putative EET proteins in most of these lakes, where oxidative EET strongly correlated with DOM. Numerous novel clusters of multiheme cytochromes that may enable EET were identified. Taxa previously not considered EET-capable were found to carry EET genes. We propose that EET and DOM interactions are of ecologically important to bacterioplankton in small boreal lakes, and that EET, particularly by methylotrophs and anoxygenic phototrophs, should be further studied and incorporated into methane emission models of melting permafrost.


Assuntos
Organismos Aquáticos , Lagos , Lagos/microbiologia , Oxirredução , Transporte de Elétrons , Solo , Bactérias
2.
Mol Ecol ; 32(11): 2798-2817, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36799010

RESUMO

Microbial rhodopsins are widely distributed in aquatic environments and may significantly contribute to phototrophy and energy budgets in global oceans. However, the study of freshwater rhodopsins has been largely limited. Here, we explored the diversity, ecological distribution, and expression of opsin genes that encode the apoproteins of type I rhodopsins in humic and clearwater lakes with contrasting physicochemical and optical characteristics. Using metagenomes and metagenome-assembled genomes, we recovered opsin genes from a wide range of taxa, mostly predicted to encode green light-absorbing proton pumps. Viral opsin and novel bacterial opsin clades were recovered. Opsin genes occurred more frequently in taxa from clearwater than from humic water, and opsins in some taxa have nontypical ion-pumping motifs that might be associated with physicochemical conditions of these two freshwater types. Analyses of the surface layer of 33 freshwater systems revealed an inverse correlation between opsin gene abundance and lake dissolved organic carbon (DOC). In humic water with high terrestrial DOC and light-absorbing humic substances, opsin gene abundance was low and dramatically declined within the first few meters, whereas the abundance remained relatively high along the bulk water column in clearwater lakes with low DOC, suggesting opsin gene distribution is influenced by lake optical properties and DOC. Gene expression analysis confirmed the significance of rhodopsin-based phototrophy in clearwater lakes and revealed different diel expressional patterns among major phyla. Overall, our analyses revealed freshwater opsin diversity, distribution and expression patterns, and suggested the significance of rhodopsin-based phototrophy in freshwater energy budgets, especially in clearwater lakes.


Assuntos
Lagos , Opsinas , Lagos/microbiologia , Opsinas/genética , Rodopsina/genética , Bactérias/genética , Água
3.
Environ Sci Technol ; 54(24): 15840-15851, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33228362

RESUMO

Mercury (Hg) methylation is a microbially mediated process that converts inorganic Hg into bioaccumulative, neurotoxic methylmercury (MeHg). The metabolic activity of methylating organisms is highly dependent on biogeochemical conditions, which subsequently influences MeHg production. However, our understanding of the ecophysiology of methylators in natural ecosystems is still limited. Here, we identified potential locations of MeHg production in the anoxic, sulfidic hypolimnion of a freshwater lake. At these sites, we used shotgun metagenomics to characterize microorganisms with the Hg-methylation gene hgcA. Putative methylators were dominated by hgcA sequences divergent from those in well-studied, confirmed methylators. Using genome-resolved metagenomics, we identified organisms with hgcA (hgcA+) within the Bacteroidetes and the recently described Kiritimatiellaeota phyla. We identified hgcA+ genomes derived from sulfate-reducing bacteria, but these accounted for only 22% of hgcA+ genome coverage. The most abundant hgcA+ genomes were from fermenters, accounting for over half of the hgcA gene coverage. Many of these organisms also mediate hydrolysis of polysaccharides, likely from cyanobacterial blooms. This work highlights the distribution of the Hg-methylation genes across microbial metabolic guilds and indicate that primary degradation of polysaccharides and fermentation may play an important but unrecognized role in MeHg production in the anoxic hypolimnion of freshwater lakes.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Anaerobiose , Ecossistema , Lagos , Mercúrio/análise , Metilação , Sulfatos
4.
Environ Microbiol ; 20(7): 2568-2584, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29921005

RESUMO

Northern lakes are ice-covered for a large part of the year, yet our understanding of microbial diversity and activity during winter lags behind that of the ice-free period. In this study, we investigated under-ice diversity and metabolism of Verrucomicrobia in seasonally ice-covered lakes in temperate and boreal regions of Quebec, Canada using 16S rRNA sequencing, metagenomics and metatranscriptomics. Verrucomicrobia, particularly the V1, V3 and V4 subdivisions, were abundant during ice-covered periods. A diversity of Verrucomicrobia genomes were reconstructed from Quebec lake metagenomes. Several genomes were associated with the ice-covered period and were represented in winter metatranscriptomes, supporting the notion that Verrucomicrobia are metabolically active under ice. Verrucomicrobia transcriptome analysis revealed a range of metabolisms potentially occurring under ice, including carbohydrate degradation, glycolate utilization, scavenging of chlorophyll degradation products, and urea use. Genes for aerobic sulfur and hydrogen oxidation were expressed, suggesting chemolithotrophy may be an adaptation to conditions where labile carbon may be limited. The expression of genes for flagella biosynthesis and chemotaxis was detected, suggesting Verrucomicrobia may be actively sensing and responding to winter nutrient pulses, such as phytoplankton blooms. These results increase our understanding on the diversity and metabolic processes occurring under ice in northern lakes ecosystems.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.


Assuntos
Variação Genética , Camada de Gelo/microbiologia , Lagos/microbiologia , Metagenoma , Verrucomicrobia/genética , Canadá , Ecossistema , Genoma Bacteriano , Fitoplâncton , RNA Ribossômico 16S , Estações do Ano , Microbiologia da Água
5.
Bioorg Med Chem Lett ; 23(12): 3565-9, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23664880

RESUMO

A novel series of indole/indazole-aminopyrimidines was designed and synthesized with an aim to achieve optimal potency and selectivity for the c-Jun kinase family or JNKs. Structure guided design was used to optimize the series resulting in a significant potency improvement. The best compound (17) has IC50 of 3 nM for JNK1 and 20 nM for JNK2, with greater than 40-fold selectivity against other kinases with good physicochemical and pharmacokinetic properties.


Assuntos
Indóis/química , Indóis/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Cristalografia por Raios X , Indazóis/química , Indazóis/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/química , Fosforilação , Relação Estrutura-Atividade
6.
Bioorg Med Chem Lett ; 23(5): 1486-92, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23352510

RESUMO

A series of amino-pyrimidines was developed based upon an initial kinase cross-screening hit from a CDK2 program. Kinase profiling and structure-based drug design guided the optimization from the initial 1,2,3-benzotriazole hit to a potent and selective JNK inhibitor, compound 24f (JNK1 and 2 IC(50)=16 and 66 nM, respectively), with bioavailability in rats and suitable for further in vivo pharmacological evaluation.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Triazóis/química , Triazóis/farmacologia , Animais , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Modelos Moleculares , Inibidores de Proteínas Quinases/síntese química , Pirimidinas/síntese química , Ratos , Relação Estrutura-Atividade , Triazóis/síntese química
7.
bioRxiv ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37904928

RESUMO

Background: Viruses, the majority of which are uncultivated, are among the most abundant biological entities on Earth. From altering microbial physiology to driving community dynamics, viruses are fundamental members of microbiomes. While the number of studies leveraging viral metagenomics (viromics) for studying uncultivated viruses is growing, standards for viromics research are lacking. Viromics can utilize computational discovery of viruses from total metagenomes of all community members (hereafter metagenomes) or use physical separation of virus-specific fractions (hereafter viromes). However, differences in the recovery and interpretation of viruses from metagenomes and viromes obtained from the same samples remain understudied. Results: Here, we compare viral communities from paired viromes and metagenomes obtained from 60 diverse samples across human gut, soil, freshwater, and marine ecosystems. Overall, viral communities obtained from viromes were more abundant and species rich than those obtained from metagenomes, although there were some exceptions. Despite this, metagenomes still contained many viral genomes not detected in viromes. We also found notable differences in the predicted lytic state of viruses detected in viromes vs metagenomes at the time of sequencing. Other forms of variation observed include genome presence/absence, genome quality, and encoded protein content between viromes and metagenomes, but the magnitude of these differences varied by environment. Conclusions: Overall, our results show that the choice of method can lead to differing interpretations of viral community ecology. We suggest that the choice of whether to target a metagenome or virome to study viral communities should be dependent on the environmental context and ecological questions being asked. However, our overall recommendation to researchers investigating viral ecology and evolution is to pair both approaches to maximize their respective benefits.

8.
bioRxiv ; 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37333121

RESUMO

Many universally and conditionally important genes are genomically aggregated within clusters. Here, we introduce fai and zol, which together enable large-scale comparative analysis of different types of gene clusters and mobile-genetic elements (MGEs), such as biosynthetic gene clusters (BGCs) or viruses. Fundamentally, they overcome a current bottleneck to reliably perform comprehensive orthology inference at large scale across broad taxonomic contexts and thousands of genomes. First, fai allows the identification of orthologous or homologous instances of a query gene cluster of interest amongst a database of target genomes. Subsequently, zol enables reliable, context-specific inference of protein-encoding ortholog groups for individual genes across gene cluster instances. In addition, zol performs functional annotation and computes a variety of statistics for each inferred ortholog group. These programs are showcased through application to: (i) longitudinal tracking of a virus in metagenomes, (ii) discovering novel population-genetic insights of two common BGCs in a fungal species, and (iii) uncovering large-scale evolutionary trends of a virulence-associated gene cluster across thousands of genomes from a diverse bacterial genus.

9.
mSystems ; 8(3): e0020123, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37285121

RESUMO

The sulfur-containing amino acid cysteine is abundant in the environment, including in freshwater lakes. Biological cysteine degradation can result in hydrogen sulfide (H2S), a toxic and ecologically relevant compound that is a central player in biogeochemical cycling in aquatic environments. Here, we investigated the ecological significance of cysteine in oxic freshwater, using isolated cultures, controlled experiments, and multiomics. We screened bacterial isolates enriched from natural lake water for their ability to produce H2S when provided cysteine. We identified 29 isolates (Bacteroidota, Proteobacteria, and Actinobacteria) that produced H2S. To understand the genomic and genetic basis for cysteine degradation and H2S production, we further characterized three isolates using whole-genome sequencing (using a combination of short-read and long-read sequencing) and tracked cysteine and H2S levels over their growth ranges: Stenotrophomonas maltophilia (Gammaproteobacteria), S. bentonitica (Gammaproteobacteria), and Chryseobacterium piscium (Bacteroidota). Cysteine decreased and H2S increased, and all three genomes had genes involved in cysteine degradation. Finally, to assess the presence of these organisms and genes in the environment, we surveyed a 5-year time series of metagenomic data from the same isolation source (Lake Mendota, Madison, WI, USA) and identified their presence throughout the time series. Overall, our study shows that diverse isolated bacterial strains can use cysteine and produce H2S under oxic conditions, and we show evidence using metagenomic data that this process may occur more broadly in natural freshwater lakes. Future considerations of sulfur cycling and biogeochemistry in oxic environments should account for H2S production from the degradation of organosulfur compounds. IMPORTANCE Hydrogen sulfide (H2S), a naturally occurring gas with both biological and abiotic origins, can be toxic to living organisms. In aquatic environments, H2S production typically originates from anoxic (lacking oxygen) environments, such as sediments, or the bottom layers of thermally stratified lakes. However, the degradation of sulfur-containing amino acids such as cysteine, which all cells and life forms rely on, can be a source of ammonia and H2S in the environment. Unlike other approaches for biological H2S production such as dissimilatory sulfate reduction, cysteine degradation can occur in the presence of oxygen. Yet, little is known about how cysteine degradation influences sulfur availability and cycling in freshwater lakes. In our study, we identified diverse bacteria from a freshwater lake that can produce H2S in the presence of O2. Our study highlights the ecological importance of oxic H2S production in natural ecosystems and necessitates a change in our outlook on sulfur biogeochemistry.


Assuntos
Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/metabolismo , Cisteína/metabolismo , Ecossistema , Sulfetos/metabolismo , Bactérias/genética , Enxofre/metabolismo , Lagos/microbiologia , Oxigênio/metabolismo , Genômica
10.
Psychol Assess ; 35(10): 842-855, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37732963

RESUMO

The personal recovery movement advocates for shifting emphasis from clinical symptom reduction toward reclaiming personal agency and creating meaning-filled lives despite the presence of distressing experiences. Corresponding personal recovery measures have been developed; however, there is no established psychometric assessment of personal recovery following a suicidal episode. This study addressed this gap by developing the Recovery Evaluation and Suicide Support Tool (RESST) and assessing its test score reliability, test score interpretations' validity, and psychometric properties. Throughout RESST's development, input from diverse stakeholders-including clinicians, researchers, and individuals with lived experience-was gathered to ensure a meaningful and useful scale. Exploratory factor analysis techniques were used with adults with a suicidal episode history (N = 502) to select and refine items, culminating in a 21-item scale with four distinct subscales: Self-Worth, Life Worth, Social Worth, and Self-Understanding. Confirmatory factor analysis techniques demonstrated model fit across three samples of adults with a suicidal episode history (combined N = 1,523), and test-retest reliability was obtained (N = 204). The results revealed that RESST scores exhibit an internally consistent and replicable factor structure, consistent with personal recovery theory. Additionally, the interpretation of test scores exhibited both convergent and discriminant validity. Mental health indices related to recovery, negative mood states, suicidality, and meaning in life had significant moderate-to-strong correlations with the RESST, supporting the validity of the test score interpretations and clinical relevance. This measure should aid research into recovery processes and understanding how recovery following a suicidal episode may be enhanced clinically and personally. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Assuntos
Ideação Suicida , Suicídio , Adulto , Humanos , Reprodutibilidade dos Testes , Relevância Clínica , Bases de Dados Factuais
11.
ISME J ; 17(8): 1194-1207, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37179442

RESUMO

In globally distributed deep-sea hydrothermal vent plumes, microbiomes are shaped by the redox energy landscapes created by reduced hydrothermal vent fluids mixing with oxidized seawater. Plumes can disperse over thousands of kilometers and their characteristics are determined by geochemical sources from vents, e.g., hydrothermal inputs, nutrients, and trace metals. However, the impacts of plume biogeochemistry on the oceans are poorly constrained due to a lack of integrated understanding of microbiomes, population genetics, and geochemistry. Here, we use microbial genomes to understand links between biogeography, evolution, and metabolic connectivity, and elucidate their impacts on biogeochemical cycling in the deep sea. Using data from 36 diverse plume samples from seven ocean basins, we show that sulfur metabolism defines the core microbiome of plumes and drives metabolic connectivity in the microbial community. Sulfur-dominated geochemistry influences energy landscapes and promotes microbial growth, while other energy sources influence local energy landscapes. We further demonstrated the consistency of links among geochemistry, function, and taxonomy. Amongst all microbial metabolisms, sulfur transformations had the highest MW-score, a measure of metabolic connectivity in microbial communities. Additionally, plume microbial populations have low diversity, short migration history, and gene-specific sweep patterns after migrating from background seawater. Selected functions include nutrient uptake, aerobic oxidation, sulfur oxidation for higher energy yields, and stress responses for adaptation. Our findings provide the ecological and evolutionary bases of change in sulfur-driven microbial communities and their population genetics in adaptation to changing geochemical gradients in the oceans.


Assuntos
Fontes Hidrotermais , Microbiota , Enxofre/metabolismo , Água do Mar , Oceanos e Mares , Oxirredução , Filogenia
12.
13.
Microbiome ; 10(1): 33, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35172890

RESUMO

BACKGROUND: Advances in microbiome science are being driven in large part due to our ability to study and infer microbial ecology from genomes reconstructed from mixed microbial communities using metagenomics and single-cell genomics. Such omics-based techniques allow us to read genomic blueprints of microorganisms, decipher their functional capacities and activities, and reconstruct their roles in biogeochemical processes. Currently available tools for analyses of genomic data can annotate and depict metabolic functions to some extent; however, no standardized approaches are currently available for the comprehensive characterization of metabolic predictions, metabolite exchanges, microbial interactions, and microbial contributions to biogeochemical cycling. RESULTS: We present METABOLIC (METabolic And BiogeOchemistry anaLyses In miCrobes), a scalable software to advance microbial ecology and biogeochemistry studies using genomes at the resolution of individual organisms and/or microbial communities. The genome-scale workflow includes annotation of microbial genomes, motif validation of biochemically validated conserved protein residues, metabolic pathway analyses, and calculation of contributions to individual biogeochemical transformations and cycles. The community-scale workflow supplements genome-scale analyses with determination of genome abundance in the microbiome, potential microbial metabolic handoffs and metabolite exchange, reconstruction of functional networks, and determination of microbial contributions to biogeochemical cycles. METABOLIC can take input genomes from isolates, metagenome-assembled genomes, or single-cell genomes. Results are presented in the form of tables for metabolism and a variety of visualizations including biogeochemical cycling potential, representation of sequential metabolic transformations, community-scale microbial functional networks using a newly defined metric "MW-score" (metabolic weight score), and metabolic Sankey diagrams. METABOLIC takes ~ 3 h with 40 CPU threads to process ~ 100 genomes and corresponding metagenomic reads within which the most compute-demanding part of hmmsearch takes ~ 45 min, while it takes ~ 5 h to complete hmmsearch for ~ 3600 genomes. Tests of accuracy, robustness, and consistency suggest METABOLIC provides better performance compared to other software and online servers. To highlight the utility and versatility of METABOLIC, we demonstrate its capabilities on diverse metagenomic datasets from the marine subsurface, terrestrial subsurface, meadow soil, deep sea, freshwater lakes, wastewater, and the human gut. CONCLUSION: METABOLIC enables the consistent and reproducible study of microbial community ecology and biogeochemistry using a foundation of genome-informed microbial metabolism, and will advance the integration of uncultivated organisms into metabolic and biogeochemical models. METABOLIC is written in Perl and R and is freely available under GPLv3 at https://github.com/AnantharamanLab/METABOLIC . Video abstract.


Assuntos
Genoma Microbiano , Microbiota , Humanos , Lagos , Metagenoma/genética , Metagenômica , Microbiota/genética
15.
mSystems ; 6(5): e0113821, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34636672

RESUMO

Viruses are ubiquitous on Earth and are keystone components of environments, ecosystems, and human health. Yet, viruses remain poorly studied because most cannot be isolated in a laboratory. In the field of biogeochemistry, which aims to understand the interactions between biology, geology, and chemistry, there is progress to be made in understanding the different roles played by viruses in nutrient cycling, food webs, and elemental transformations. In this commentary, we outline current microbial ecology frameworks for understanding biogeochemical cycling in aquatic ecosystems. Next, we review some existing experimental and computational techniques that are enabling us to study the role of viruses in biogeochemical cycling, using examples from aquatic environments. Finally, we provide a conceptual model that balances limitations of computational tools when combined with biogeochemistry and ecological data. We envision meeting the grand challenge of understanding how viruses impact biogeochemical cycling by using a multifaceted approach to viral ecology.

16.
Pediatr Infect Dis J ; 40(1): e41-e42, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33006873

RESUMO

We highlight 2 cases of immunocompetent pediatric patients diagnosed with osteomyelitis and cellulitis attributed to Aeromonas hydrophila. One case had a direct water source; however, the second case occurred following a wild hog bite. Both required fluoroquinolone treatment and demonstrated the need to consider A. hydrophila in patients with water exposure, animal bites and initial antibiotic failure.


Assuntos
Aeromonas hydrophila , Mordeduras e Picadas , Infecções por Bactérias Gram-Negativas , Esportes Aquáticos , Doenças Transmitidas pela Água , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Celulite (Flegmão) , Georgia , Humanos , Osteomielite , Suínos
17.
ISME J ; 15(7): 1971-1986, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33564113

RESUMO

Lake Tanganyika (LT) is the largest tropical freshwater lake, and the largest body of anoxic freshwater on Earth's surface. LT's mixed oxygenated surface waters float atop a permanently anoxic layer and host rich animal biodiversity. However, little is known about microorganisms inhabiting LT's 1470 meter deep water column and their contributions to nutrient cycling, which affect ecosystem-level function and productivity. Here, we applied genome-resolved metagenomics and environmental analyses to link specific taxa to key biogeochemical processes across a vertical depth gradient in LT. We reconstructed 523 unique metagenome-assembled genomes (MAGs) from 34 bacterial and archaeal phyla, including many rarely observed in freshwater lakes. We identified sharp contrasts in community composition and metabolic potential with an abundance of typical freshwater taxa in oxygenated mixed upper layers, and Archaea and uncultured Candidate Phyla in deep anoxic waters. Genomic capacity for nitrogen and sulfur cycling was abundant in MAGs recovered from anoxic waters, highlighting microbial contributions to the productive surface layers via recycling of upwelled nutrients, and greenhouse gases such as nitrous oxide. Overall, our study provides a blueprint for incorporation of aquatic microbial genomics in the representation of tropical freshwater lakes, especially in the context of ongoing climate change, which is predicted to bring increased stratification and anoxia to freshwater lakes.


Assuntos
Lagos , Metagenômica , Ecossistema , Metagenoma , Tanzânia
18.
ISME J ; 14(8): 2060-2077, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32393808

RESUMO

Proteobacteria constitute one of the most diverse and abundant groups of microbes on Earth. In productive marine environments like deep-sea hydrothermal systems, Proteobacteria are implicated in autotrophy coupled to sulfur, methane, and hydrogen oxidation, sulfate reduction, and denitrification. Beyond chemoautotrophy, little is known about the ecological significance of poorly studied Proteobacteria lineages that are globally distributed and active in hydrothermal systems. Here we apply multi-omics to characterize 51 metagenome-assembled genomes from three hydrothermal vent plumes in the Pacific and Atlantic Oceans that are affiliated with nine Proteobacteria lineages. Metabolic analyses revealed these organisms to contain a diverse functional repertoire including chemolithotrophic ability to utilize sulfur and C1 compounds, and chemoorganotrophic ability to utilize environment-derived fatty acids, aromatics, carbohydrates, and peptides. Comparative genomics with marine and terrestrial microbiomes suggests that lineage-associated functional traits could explain niche specificity. Our results shed light on the ecological functions and metabolic strategies of novel Proteobacteria in hydrothermal systems and beyond, and highlight the relationship between genome diversification and environmental adaptation.


Assuntos
Fontes Hidrotermais , Proteobactérias , Oceano Atlântico , Crescimento Quimioautotrófico , Filogenia , Proteobactérias/genética , Água do Mar
19.
mSystems ; 5(4)2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32817383

RESUMO

Methylmercury is a potent bioaccumulating neurotoxin that is produced by specific microorganisms that methylate inorganic mercury. Methylmercury production in diverse anaerobic bacteria and archaea was recently linked to the hgcAB genes. However, the full phylogenetic and metabolic diversity of mercury-methylating microorganisms has not been fully unraveled due to the limited number of cultured experimentally verified methylators and the limitations of primer-based molecular methods. Here, we describe the phylogenetic diversity and metabolic flexibility of putative mercury-methylating microorganisms by hgcAB identification in publicly available isolate genomes and metagenome-assembled genomes (MAGs) as well as novel freshwater MAGs. We demonstrate that putative mercury methylators are much more phylogenetically diverse than previously known and that hgcAB distribution among genomes is most likely due to several independent horizontal gene transfer events. The microorganisms we identified possess diverse metabolic capabilities spanning carbon fixation, sulfate reduction, nitrogen fixation, and metal resistance pathways. We identified 111 putative mercury methylators in a set of previously published permafrost metatranscriptomes and demonstrated that different methylating taxa may contribute to hgcA expression at different depths. Overall, we provide a framework for illuminating the microbial basis of mercury methylation using genome-resolved metagenomics and metatranscriptomics to identify putative methylators based upon hgcAB presence and describe their putative functions in the environment.IMPORTANCE Accurately assessing the production of bioaccumulative neurotoxic methylmercury by characterizing the phylogenetic diversity, metabolic functions, and activity of methylators in the environment is crucial for understanding constraints on the mercury cycle. Much of our understanding of methylmercury production is based on cultured anaerobic microorganisms within the Deltaproteobacteria, Firmicutes, and Euryarchaeota. Advances in next-generation sequencing technologies have enabled large-scale cultivation-independent surveys of diverse and poorly characterized microorganisms from numerous ecosystems. We used genome-resolved metagenomics and metatranscriptomics to highlight the vast phylogenetic and metabolic diversity of putative mercury methylators and their depth-discrete activities in thawing permafrost. This work underscores the importance of using genome-resolved metagenomics to survey specific putative methylating populations of a given mercury-impacted ecosystem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA