Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Med Virol ; 96(2): e29477, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38376942

RESUMO

Human parechovirus A (HPeV-A) is a causative agent of respiratory and gastrointestinal illnesses, acute flaccid paralysis encephalitis, meningitis, and neonatal sepsis. To clarify the characteristics of HPeV-A infection in children, 391 fecal specimens were collected from January 2014 to October 2015 from patients with acute gastroenteritis in Seoul, South Korea. Of these, 221/391 (56.5%) HPeV-A positive samples were found in children less than 2 years old. Three HPeV-A genotypes HPeV-A1 (117/221; 52.94%), HPeV-A3 (100/221; 45.25%), and HPeV-A6 (4/221; 1.81%) were detected, among which HPeV-A3 was predominant with the highest recorded value of 58.6% in 2015. Moreover, recombination events in the Korean HPeV-A3 strains were detected. Phylogenetic analysis revealed that the capsid-encoding regions and noncapsid gene 2A of the four Korean HPeV-A3 strains are closely related to the HPeV-A3 strains isolated in Canada in 2007 (Can82853-01), Japan in 2008 (A308/99), and Taiwan in 2011 (TW-03067-2011) while noncapsid genes P2 (2B-2C) and P3 (3A-3D) are closely related to those of HPeV-A1 strains BNI-788St (Germany in 2008) and TW-71594-2010 (Taiwan in 2010). This first report on the whole-genome analysis of HPeV-A3 in Korea provides insight into the evolving status and pathogenesis of HPeVs in children.


Assuntos
Parechovirus , Criança , Recém-Nascido , Humanos , Pré-Escolar , Filogenia , Parechovirus/genética , República da Coreia/epidemiologia , Evolução Biológica , Recombinação Genética
2.
Front Artif Intell ; 5: 1020532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568578

RESUMO

Point-of-Interests (POIs) represent geographic location by different categories (e.g., touristic places, amenities, or shops) and play a prominent role in several location-based applications. However, the majority of POIs category labels are crowd-sourced by the community, thus often of low quality. In this paper, we introduce the first annotated dataset for the POIs categorical classification task in Vietnamese. A total of 750,000 POIs are collected from WeMap, a Vietnamese digital map. Large-scale hand-labeling is inherently time-consuming and labor-intensive, thus we have proposed a new approach using weak labeling. As a result, our dataset covers 15 categories with 275,000 weak-labeled POIs for training, and 30,000 gold-standard POIs for testing, making it the largest compared to the existing Vietnamese POIs dataset. We empirically conduct POI categorical classification experiments using a strong baseline (BERT-based fine-tuning) on our dataset and find that our approach shows high efficiency and is applicable on a large scale. The proposed baseline gives an F1 score of 90% on the test dataset, and significantly improves the accuracy of WeMap POI data by a margin of 37% (from 56 to 93%).

3.
Sci Rep ; 8(1): 6011, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29662148

RESUMO

After the introduction of two global rotavirus vaccines, RotaTeq in 2007 and Rotarix in 2008 in South Korea, G1[P8] rotavirus was the major rotavirus genotype in the country until 2012. However, in this study, an emergence of G2P[4] as the dominant genotype during the 2013 to 2015 season has been reported. Genetic analysis revealed that these viruses had typical DS-1-like genotype constellation and showed evidence of re-assortment in one or more genome segments, including the incorporation of NSP4 genes from strains B-47/2008 from a cow and R4/Haryana/2007 from a buffalo in India, and the VP1 and VP3 genes from strain GO34/1999 from a goat in Bangladesh. Compared to the G2 RotaTeq vaccine strain, 17-24 amino acid changes, specifically A87T, D96N, S213D, and S242N substitutions in G2 epitopes, were observed. These results suggest that multiple interspecies re-assortment events might have contributed to the emergence of G2P[4] rotaviruses in the post-vaccination era in South Korea.


Assuntos
Genoma Viral , Filogenia , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/virologia , Rotavirus/genética , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/genética , Bovinos , Genótipo , Glicoproteínas/genética , Humanos , República da Coreia/epidemiologia , Infecções por Rotavirus/prevenção & controle , Vacinas contra Rotavirus/uso terapêutico , Toxinas Biológicas/genética , Proteínas não Estruturais Virais/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-29406283

RESUMO

Avian influenza A H5N6 virus is a highly contagious infectious agent that affects domestic poultry and humans in South Asian countries. Vietnam may be an evolutionary hotspot for influenza viruses and therefore could serve as a source of pandemic strains. In 2015, two novel reassortant H5N6 influenza viruses designated as A/quail/Vietnam/CVVI01/2015 and A/quail/Vietnam/CVVI03/2015 were isolated from dead quails during avian influenza outbreaks in central Vietnam, and the whole genome sequences were analyzed. The genetic analysis indicated that hemagglutinin, neuraminidase, and polymerase basic protein 2 genes of the two H5N6 viruses are most closely related to an H5N2 virus (A/chicken/Zhejiang/727079/2014) and H10N6 virus (A/chicken/Jiangxi/12782/2014) from China and an H6N6 virus (A/duck/Yamagata/061004/2014) from Japan. The HA gene of the isolates belongs to clade 2.3.4.4, which caused human fatalities in China during 2014-2016. The five other internal genes showed high identity to an H5N2 virus (A/chicken/Heilongjiang/S7/2014) from China. A whole-genome phylogenetic analysis revealed that these two outbreak strains are novel H6N6-like PB2 gene reassortants that are most closely related to influenza virus strain A/environment/Guangdong/ZS558/2015, which was detected in a live poultry market in China. This report describes the first detection of novel H5N6 reassortants in poultry during an outbreak as well as genetic characterization of these strains to better understand the antigenic evolution of influenza viruses.


Assuntos
Vírus da Influenza A/genética , Influenza Aviária/virologia , Codorniz/virologia , Vírus Reordenados/genética , Animais , Surtos de Doenças/estatística & dados numéricos , Surtos de Doenças/veterinária , Genoma Viral/genética , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/patogenicidade , Influenza Aviária/epidemiologia , Filogenia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Vírus Reordenados/isolamento & purificação , Vírus Reordenados/patogenicidade , Análise de Sequência de DNA/veterinária , Vietnã/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA