Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 7: 43720, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28387327

RESUMO

In a comment on our Article "Evidence of the hydrogen release mechanism in bulk MgH2", Surrey et al. assert that the MgH2 sample we studied was not MgH2 at any time but rather MgO; and that the transformation we observed was the formation of Kirkendall voids due to the outward diffusion of Mg. We address these issues in this reply.

2.
Sci Rep ; 5: 8450, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25677421

RESUMO

Hydrogen has the potential to power much of the modern world with only water as a by-product, but storing hydrogen safely and efficiently in solid form such as magnesium hydride remains a major obstacle. A significant challenge has been the difficulty of proving the hydriding/dehydriding mechanisms and, therefore, the mechanisms have long been the subject of debate. Here we use in situ ultra-high voltage transmission electron microscopy (TEM) to directly verify the mechanisms of the hydride decomposition of bulk MgH2 in Mg-Ni alloys. We find that the hydrogen release mechanism from bulk (2 µm) MgH2 particles is based on the growth of multiple pre-existing Mg crystallites within the MgH2 matrix, present due to the difficulty of fully transforming all Mg during a hydrogenation cycle whereas, in thin samples analogous to nano-powders, dehydriding occurs by a 'shrinking core' mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA