RESUMO
Electrophysiological techniques have improved substantially over the past years to the point that neuroprosthetics applications are becoming viable. This evolution has been fuelled by the advancement of implantable microelectrode technologies that have followed their own version of Moore's scaling law. Similarly to electronics, however, excessive data-rates and strained power budgets require the development of more efficient computation paradigms for handling neural data in situ; in particular the computationally heavy task of events classification. Here, we demonstrate how the intrinsic analogue programmability of memristive devices can be exploited to perform spike-sorting on single devices. Leveraging the physical properties of nanoscale memristors allows us to demonstrate that these devices can capture enough information in neural signal for performing spike detection (shown previously) and spike sorting at no additional power cost.
RESUMO
Emerging nanoionic memristive devices are considered as the memory technology of the future and have been winning a great deal of attention due to their ability to perform fast and at the expense of low-power and -space requirements. Their full potential is envisioned that can be fulfilled through their capacity to store multiple memory states per cell, which however has been constrained so far by issues affecting the long-term stability of independent states. Here, we introduce and evaluate a multitude of metal-oxide bi-layers and demonstrate the benefits from increased memory stability via multibit memory operation. We propose a programming methodology that allows for operating metal-oxide memristive devices as multibit memory elements with highly packed yet clearly discernible memory states. These states were found to correlate with the transport properties of the introduced barrier layers. We are demonstrating memory cells with up to 6.5 bits of information storage as well as excellent retention and power consumption performance. This paves the way for neuromorphic and non-volatile memory applications.
RESUMO
Tungsten oxide layers have been prepared on conductive glass substrates using aqueous chemical growth from a sodium tungstate precursor at low-temperature hydrothermal conditions. The deposits were then tested as cold electron emitters. Traceable layers could be deposited only within a narrow pH range of 1.5-2 at a time length not exceeding 4 h. Transmittance in the visible spectrum was found to decrease with deposition time. The presence of both monoclinic and hexagonal phases was always detected. At the longest deposition times and highest precursor concentrations, morphologies comprise randomly oriented spikes or rods. The overall emission performance is found to improve with growth time and precursor concentration. The role of morphology on the emission properties of the films is discussed.