Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Qual ; 34(4): 1439-45, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15998867

RESUMO

Cattle (Bos taurus) producers can replace a part of the traditional diet of barley (Hordeum vulgare L.) grain/silage with sunflower (Helianthus annus L.) seeds or canola meal (Brassica napus L.)/oil to enhance conjugated linoleic acids (CLA) content in milk and meat for its positive health benefits. The objective of this study is to investigate the effects of feeding sunflower or canola to finishing steers on cattle manure chemical properties and volatile fatty acid (VFA) content. The control diet contained 84% rolled barley and 15% barley silage, which provided only 2.6% lipid. The other six treatments had 6.6 to 8.6% lipid delivered from sources such as hay, sunflower seed (SS), canola meal/oil, and SS forage pellets. Manure samples (a mixture of cattle urine, feces, and woodchip bedding materials) were collected and analyzed after cattle had been on these diets for 113 d. The dietary source and level of lipid had no effect on organic N and nitrate N content in manure, but significantly affected ammonia N and VFA. Inclusion of SS forage pellets, hay, or canola meal/oil in cattle diets had no significant impact on manure characteristics, but SS significantly reduced the pH and increased propionic, isobutyric, and isovaleric content. In addition, N loss after excretion (mainly from urine N) increases with the pH and N levels in both feed and manure. The combination of SS with barley silage resulted in a lower VFA and NH3 content in manure and should be a more attractive option. To better manage N nutrient cycles and reduce NH3 related odor problems, feed and manure pH should be one of the factors to consider when determining feed mix rations.


Assuntos
Ração Animal , Ácidos Graxos Monoinsaturados , Helianthus , Esterco , Nitrogênio/análise , Odorantes/prevenção & controle , Animais , Bovinos , Ácidos Graxos/análise , Masculino , Metano/análise , Nitrogênio/metabolismo , Óleo de Brassica napus , Volatilização
2.
J Environ Qual ; 34(3): 774-81, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15843640

RESUMO

Phosphogypsum (PG), a by-product of the phosphate fertilizer industry, reduces N losses when added to composting livestock manure, but its impact on greenhouse gas emissions is unclear. The objective of this research was to assess the effects of PG addition on greenhouse gas emissions during cattle feedlot manure composting. Sand was used as a filler material for comparison. The seven treatments were PG10, PG20, PG30, S10, S20, and S30, representing the rate of PG or sand addition at 10, 20, or 30% of manure dry weight and a check treatment (no PG or sand) with three replications. The manure treatments were composted in open windrows and turned five times during a 134-d period. Addition of PG significantly increased electrical conductivity (EC) and decreased pH in the final compost. Total carbon (TC), total nitrogen (TN), and mineral nitrogen contents in the final composted product were not affected by the addition of PG or sand. From 40 to 54% of initial TC was lost during composting, mostly as CO(2), with CH(4) accounting for <14%. The addition of PG significantly reduced CH(4) emissions, which decreased exponentially with the compost total sulfur (TS) content. The emission of N(2)O accounted for <0.2% of initial TN in the manure, increasing as compost pH decreased from alkaline to near neutral. Based on the total greenhouse gas budget, PG addition reduced greenhouse gas emissions (CO(2)-C equivalent) during composting of livestock manure by at least 58%, primarily due to reduced CH(4) emission.


Assuntos
Sulfato de Cálcio , Dióxido de Carbono/análise , Esterco , Nitrogênio/análise , Fósforo , Eliminação de Resíduos , Animais , Bovinos , Fertilizantes , Gases , Resíduos Industriais
3.
Environ Pollut ; 156(3): 1243-51, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18440678

RESUMO

Feedlots are potential point sources for the flow of antibiotics into the environment due to common use of antibiotics such as sulfamethazine, chlortetracycline and tylosin. Hence soils and manures originating from a grassland control, an experimental and a commercial feedlot were analyzed and mass balances were calculated for these antibiotics. Up to 9990 microg kg(-1) sulfamethazine and 401microg kg(-1) chlortetracycline on a dry matter basis were determined in feedlot manure. Soil concentrations were two orders of magnitude smaller. This corresponds to 7-40% of the calculated residual amount. In the commercial feedlot chlortetracycline was found down to soil depths of -40 cm; sulfamethazine was still detectable 1 year after medication. Sulfamethazine and chlortetracycline were additionally determined in manure of a control treatment in the experimental feedlot where cattle never received antibiotics. This was attributed to runoff from upslope pens. Consequently, antibiotics partially persist within feedlots and may be dislocated into the surrounding environment by vertical transport and runoff.


Assuntos
Antibacterianos/análise , Esterco/análise , Poluentes do Solo/análise , Solo/análise , Drogas Veterinárias/análise , Criação de Animais Domésticos , Animais , Canadá , Bovinos , Clortetraciclina/análise , Monitoramento Ambiental/métodos , Sulfametazina/análise , Tilosina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA