Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(8): 087001, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35275692

RESUMO

Near the antiferromagnetic quantum critical point (QCP) of electron-doped cuprate superconductors, angle-resolved photoemission experiments detect hot spots where the Fermi surface disappears. Here, we demonstrate, using the two-particle self-consistent theory, that in the antinodal region the Fermi liquid remains stable for a broad range of angles on the Fermi surface and for all dopings near the QCP. We show how the quasiparticle weight Z and effective mass m^{*} change and then abruptly become meaningless as the hot spots are approached. We propose a dimensionless number, easily accessible in ARPES experiments, that can be used to gauge the strength of correlations.

2.
Phys Rev Lett ; 123(21): 217005, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31809152

RESUMO

Although correlated electronic-structure calculations explain very well the normal state of Sr_{2}RuO_{4}, its superconducting symmetry is still unknown. Here we construct the spin and charge fluctuation pairing interactions based on its correlated normal state. Correlations significantly reduce ferromagnetic in favor of antiferromagnetic fluctuations and increase interorbital pairing. From the normal-state Eliashberg equations, we find spin-singlet d-wave pairing close to magnetic instabilities. Away from these instabilities, where charge fluctuations increase, we find two time-reversal symmetry-breaking spin triplets: an odd-frequency s wave, and a doubly degenerate interorbital pairing between d_{xy} and (d_{yz},d_{xz}).

3.
Phys Rev Lett ; 122(6): 067203, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30822052

RESUMO

Entanglement and information are powerful lenses to probe phases transitions in many-body systems. Motivated by recent cold atom experiments, which are now able to measure the corresponding information-theoretic quantities, we study the Mott transition in the half-filled two-dimensional Hubbard model using cellular dynamical mean-field theory, and focus on two key measures of quantum correlations: entanglement entropy and a measure of total mutual information. We show that they detect the first-order nature of the transition, the universality class of the end point, and the crossover emanating from the end point.

4.
Phys Rev Lett ; 117(13): 137001, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27715100

RESUMO

The rich variety of iron-based superconductors and their complex electronic structure lead to a wide range of possibilities for gap symmetry and pairing components. Here we solve in the two-Fe Brillouin zone the full frequency-dependent linearized Eliashberg equations to investigate spin-fluctuations mediated Cooper pairing for LiFeAs. The magnetic excitations are calculated with the random phase approximation on a correlated electronic structure obtained with density functional theory and dynamical mean field theory. The interaction between electrons through Hund's coupling promotes both the intraorbital d_{xz(yz)} and the interorbital magnetic susceptibility. As a consequence, the leading pairing channel, conventional s^{+-}, acquires sizable interorbital d_{xy}-d_{xz(yz)} singlet pairing with odd parity under glide-plane symmetry. The combination of intra- and interorbital components makes the results consistent with available experiments on the angular dependence of the gaps observed on the different Fermi surfaces.

5.
Phys Rev Lett ; 108(21): 216401, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-23003285

RESUMO

An intricate interplay between superconductivity, pseudogap, and Mott transition, either bandwidth driven or doping driven, occurs in materials. Layered organic conductors and cuprates offer two prime examples. We provide a unified perspective of this interplay in the two-dimensional Hubbard model within cellular dynamical mean-field theory on a 2×2 plaquette and using the continuous-time quantum Monte Carlo method as impurity solver. Both at half filling and at finite doping, the metallic normal state close to the Mott insulator is unstable to d-wave superconductivity. Superconductivity can destroy the first-order transition that separates the pseudogap phase from the overdoped metal, yet that normal state transition leaves its marks on the dynamic properties of the superconducting phase. For example, as a function of doping one finds a rapid change in the particle-hole asymmetry of the superconducting density of states. In the doped Mott insulator, the dynamical mean-field superconducting transition temperature T(c)(d) does not scale with the order parameter when there is a normal-state pseudogap. T(c)(d) corresponds to the local pair formation temperature observed in tunneling experiments and is distinct from the pseudogap temperature.

6.
Phys Rev Lett ; 104(22): 226402, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20867185

RESUMO

Experiments on layered materials call for a study of the influence of short-range spin correlations on the Mott transition. To this end, we solve the cellular dynamical mean-field equations for the Hubbard model on a plaquette with continuous-time quantum Monte Carlo calculations. The normal-state phase diagram as a function of temperature T, interaction strength U, and filling n reveals that upon increasing n towards the insulator, there is a surface of first-order transition between two metals at nonzero doping. For T above the critical end line there is a maximum in scattering rate.

7.
Science ; 363(6425): 379-382, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30523078

RESUMO

Strong interactions in many-body quantum systems complicate the interpretation of charge transport in such materials. To shed light on this problem, we study transport in a clean quantum system: ultracold lithium-6 in a two-dimensional optical lattice, a testing ground for strong interaction physics in the Fermi-Hubbard model. We determine the diffusion constant by measuring the relaxation of an imposed density modulation and modeling its decay hydrodynamically. The diffusion constant is converted to a resistivity by using the Nernst-Einstein relation. That resistivity exhibits a linear temperature dependence and shows no evidence of saturation, two characteristic signatures of a bad metal. The techniques we developed in this study may be applied to measurements of other transport quantities, including the optical conductivity and thermopower.

8.
Phys Rev E ; 94(2-1): 023303, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27627408

RESUMO

Analytic continuation of numerical data obtained in imaginary time or frequency has become an essential part of many branches of quantum computational physics. It is, however, an ill-conditioned procedure and thus a hard numerical problem. The maximum-entropy approach, based on Bayesian inference, is the most widely used method to tackle that problem. Although the approach is well established and among the most reliable and efficient ones, useful developments of the method and of its implementation are still possible. In addition, while a few free software implementations are available, a well-documented, optimized, general purpose, and user-friendly software dedicated to that specific task is still lacking. Here we analyze all aspects of the implementation that are critical for accuracy and speed and present a highly optimized approach to maximum entropy. Original algorithmic and conceptual contributions include (1) numerical approximations that yield a computational complexity that is almost independent of temperature and spectrum shape (including sharp Drude peaks in broad background, for example) while ensuring quantitative accuracy of the result whenever precision of the data is sufficient, (2) a robust method of choosing the entropy weight α that follows from a simple consistency condition of the approach and the observation that information- and noise-fitting regimes can be identified clearly from the behavior of χ^{2} with respect to α, and (3) several diagnostics to assess the reliability of the result. Benchmarks with test spectral functions of different complexity and an example with an actual physical simulation are presented. Our implementation, which covers most typical cases for fermions, bosons, and response functions, is available as an open source, user-friendly software.

9.
Sci Rep ; 6: 22715, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26964524

RESUMO

Superconductivity in the cuprates exhibits many unusual features. We study the two-dimensional Hubbard model with plaquette dynamical mean-field theory to address these unusual features and relate them to other normal-state phenomena, such as the pseudogap. Previous studies with this method found that upon doping the Mott insulator at low temperature a pseudogap phase appears. The low-temperature transition between that phase and the correlated metal at higher doping is first-order. A series of crossovers emerge along the Widom line extension of that first-order transition in the supercritical region. Here we show that the highly asymmetric dome of the dynamical mean-field superconducting transition temperature Tc(d), the maximum of the condensation energy as a function of doping, the correlation between maximum Tc(D) and normal-state scattering rate, the change from potential-energy driven to kinetic-energy driven pairing mechanisms can all be understood as remnants of the normal state first-order transition and its associated crossovers that also act as an organizing principle for the superconducting state.

10.
Sci Rep ; 2: 547, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22855703

RESUMO

The pseudogap refers to an enigmatic state of matter with unusual physical properties found below a characteristic temperature T* in hole-doped high-temperature superconductors. Determining T* is critical for understanding this state. Here we study the simplest model of correlated electron systems, the Hubbard model, with cluster dynamical mean-field theory to find out whether the pseudogap can occur solely because of strong coupling physics and short nonlocal correlations. We find that the pseudogap characteristic temperature T* is a sharp crossover between different dynamical regimes along a line of thermodynamic anomalies that appears above a first-order phase transition, the Widom line. The Widom line emanating from the critical endpoint of a first-order transition is thus the organizing principle for the pseudogap phase diagram of the cuprates. No additional broken symmetry is necessary to explain the phenomenon. Broken symmetry states appear in the pseudogap and not the other way around.

11.
Phys Rev Lett ; 97(4): 046402, 2006 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16907597

RESUMO

We study the Mott transition, antiferromagnetism, and superconductivity in layered organic conductors using the cellular dynamical mean-field theory for the frustrated Hubbard model. A d-wave superconducting phase appears between an antiferromagnetic insulator and a metal for t'/t=0.3-0.7 or between a nonmagnetic Mott insulator (spin liquid) and a metal for t'/t>or=0.8, in agreement with experiments on layered organic conductors including kappa-(ET)2Cu2(CN)3. These phases are separated by a strong first-order transition. The phase diagram gives much insight into the mechanism for -wave superconductivity. Two predictions are made.

12.
Phys Rev Lett ; 94(15): 156404, 2005 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-15904166

RESUMO

Using variational cluster perturbation theory we study the competition between d-wave superconductivity (dSC) and antiferromagnetism (AF) in the t-t(')-t('')-U Hubbard model. Large scale computer calculations reproduce the overall ground-state phase diagram of the high-temperature superconductors as well as the one-particle excitation spectra for both hole and electron doping. We identify clear signatures of the Mott gap as well as of AF and of dSC that should be observable in photoemission experiments.

13.
Phys Rev Lett ; 92(12): 126401, 2004 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-15089691

RESUMO

Using cluster perturbation theory, it is shown that the spectral weight and pseudogap observed at the Fermi energy in recent angle resolved photoemission spectroscopy of both electron- and hole-doped high-temperature superconductors find their natural explanation within the t-t(')-t(")-U Hubbard model in two dimensions. The value of the interaction U needed to explain the experiments for electron-doped systems at optimal doping is in the weak to intermediate coupling regime where the t-J model is inappropriate. At strong coupling, short-range correlations suffice to create a pseudogap, but at weak-coupling long correlation lengths associated with the antiferromagnetic wave vector are necessary.

14.
Phys Rev Lett ; 93(14): 147004, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15524832

RESUMO

We present reliable many-body calculations for the t-t(')-t('')-U Hubbard model that explain in detail the results of recent angle-resolved photoemission experiments on electron-doped high-temperature superconductors. The origin of the pseudogap is traced to two-dimensional antiferromagnetic spin fluctuations whose calculated temperature-dependent correlation length also agrees with recent neutron scattering measurements. We make specific predictions for photoemission, for neutron scattering, and for the phase diagram.

15.
Phys Rev Lett ; 97(4): 049701; author reply 049702, 2006 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16907623
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA