Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 3651, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686676

RESUMO

Lesion-based targeting strategies underlie cancer precision medicine. However, biological principles - such as cellular senescence - remain difficult to implement in molecularly informed treatment decisions. Functional analyses in syngeneic mouse models and cross-species validation in patient datasets might uncover clinically relevant genetics of biological response programs. Here, we show that chemotherapy-exposed primary Eµ-myc transgenic lymphomas - with and without defined genetic lesions - recapitulate molecular signatures of patients with diffuse large B-cell lymphoma (DLBCL). Importantly, we interrogate the murine lymphoma capacity to senesce and its epigenetic control via the histone H3 lysine 9 (H3K9)-methyltransferase Suv(ar)39h1 and H3K9me3-active demethylases by loss- and gain-of-function genetics, and an unbiased clinical trial-like approach. A mouse-derived senescence-indicating gene signature, termed "SUVARness", as well as high-level H3K9me3 lymphoma expression, predict favorable DLBCL patient outcome. Our data support the use of functional genetics in transgenic mouse models to incorporate basic biology knowledge into cancer precision medicine in the clinic.


Assuntos
Senescência Celular , Histona Metiltransferases , Linfoma Difuso de Grandes Células B , Células 3T3 , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Epigênese Genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Camundongos , Camundongos Transgênicos , Prognóstico
2.
Sci Rep ; 9(1): 9593, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270369

RESUMO

Numerous methods have been developed trying to infer actual regulatory events in a sample. A prominent class of methods model genome-wide gene expression as linear equations derived from a transcription factor (TF) - gene network and optimizes parameters to fit the measured expression intensities. We apply four such methods on experiments with a TF-knockdown (KD) in human and E. coli. The transcriptome data provides clear expression signals and thus represents an extremely favorable test setting. The methods estimate activity changes of all TFs, which we expect to be highest in the KD TF. However, only in 15 out of 54 cases, the KD TFs ranked in the top 5%. We show that this poor overall performance cannot be attributed to a low effectiveness of the knockdown or the specific regulatory network provided as background knowledge. Further, the ranks of regulators related to the KD TF by the network or pathway are not significantly different from a random selection. In general, the result overlaps of different methods are small, indicating that they draw very different conclusions when presented with the same, presumably simple, inference problem. These results show that the investigated methods cannot yield robust TF activity estimates in knockdown schemes.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular , Proteínas de Escherichia coli/genética , Técnicas de Inativação de Genes , Redes Reguladoras de Genes/genética , Humanos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Transcriptoma
3.
BMC Syst Biol ; 11(1): 41, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28347313

RESUMO

BACKGROUND: Gene regulation is one of the most important cellular processes, indispensable for the adaptability of organisms and closely interlinked with several classes of pathogenesis and their progression. Elucidation of regulatory mechanisms can be approached by a multitude of experimental methods, yet integration of the resulting heterogeneous, large, and noisy data sets into comprehensive and tissue or disease-specific cellular models requires rigorous computational methods. Recently, several algorithms have been proposed which model genome-wide gene regulation as sets of (linear) equations over the activity and relationships of transcription factors, genes and other factors. Subsequent optimization finds those parameters that minimize the divergence of predicted and measured expression intensities. In various settings, these methods produced promising results in terms of estimating transcription factor activity and identifying key biomarkers for specific phenotypes. However, despite their common root in mathematical optimization, they vastly differ in the types of experimental data being integrated, the background knowledge necessary for their application, the granularity of their regulatory model, the concrete paradigm used for solving the optimization problem and the data sets used for evaluation. RESULTS: Here, we review five recent methods of this class in detail and compare them with respect to several key properties. Furthermore, we quantitatively compare the results of four of the presented methods based on publicly available data sets. CONCLUSIONS: The results show that all methods seem to find biologically relevant information. However, we also observe that the mutual result overlaps are very low, which contradicts biological intuition. Our aim is to raise further awareness of the power of these methods, yet also to identify common shortcomings and necessary extensions enabling focused research on the critical points.


Assuntos
Genômica/métodos , Algoritmos , Bases de Dados Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA