Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mar Biol ; 78: 9-44, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29056145

RESUMO

For over 100 years, sharks have been encountered, as either directed catch or incidental catch, in commercial fisheries throughout the Northeast Pacific Ocean. A long-standing directed fishery for North Pacific Spiny Dogfish (Squalus suckleyi) has occurred and dominated shark landings and discards. Other fisheries, mainly for shark livers, have historically targeted species including Bluntnose Sixgill Shark (Hexanchus griseus) and Tope Shark (Galeorhinus galeus). While incidental catches of numerous species have occurred historically, only recently have these encounters been reliably enumerated in commercial and recreational fisheries. In this chapter we present shark catch statistics (directed and incidental) for commercial and recreational fisheries from Canadian waters (off British Columbia), southern US waters (off California, Oregon, and Washington), and northern US waters (off Alaska). In total, 17 species of sharks have collectively been encountered in these waters. Fishery encounters present conservation challenges for shark management, namely, the need for accurate catch statistics, stock delineation, life history parameter estimates, and improved assessments methods for population status and trends. Improvements in management and conservation of shark populations will only come with the further development of sound science-based fishery management practices for both targeted and incidental shark fisheries.


Assuntos
Distribuição Animal , Conservação dos Recursos Naturais , Pesqueiros , Tubarões/fisiologia , Animais , Oceano Pacífico , Especificidade da Espécie , Fatores de Tempo
2.
Adv Mar Biol ; 77: 179-220, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28882214

RESUMO

In addition to being an academic endeavour, the practical purpose of conducting age and growth studies on fishes is to provide biological data to stock assessment scientists and fisheries managers so they may better understand population demographics and manage exploitation rates. Age and size data are used to build growth models, which are a critical component of stock assessments. Though age determination of elasmobranchs in the northeast Pacific Ocean (NEP) began in the 1930s, the field has evolved substantially in recent years, allowing scientists to incorporate age data into assessments for more species than ever before. Owing to the highly diverse biology of this group of fishes, each species has its own set of challenges with regard to age determination. Age determination methods typically rely on semicalcified hard structures that form regular growth patterns; however, the structure selected and preparation method used is often species specific. New staining techniques have improved the ability to assess age and improve ageing precision for some species, and advances in microchemical methods have allowed for independent means of estimating age and validating age determination accuracy. Here we describe current age determination methods for NEP elasmobranchs. While the library of available techniques is increasing, there are still some NEP species for which reliable ageing methods have yet to be defined; we discuss these challenges and potential avenues of future research. Finally, we conclude by describing how age estimates are used in growth models and subsequently in stock assessments of selected NEP elasmobranchs.


Assuntos
Envelhecimento , Distribuição Animal , Conservação dos Recursos Naturais , Elasmobrânquios/crescimento & desenvolvimento , Pesqueiros/organização & administração , Nadadeiras de Animais , Animais , Cartilagem/química , Cartilagem/metabolismo , Elasmobrânquios/metabolismo , Oceano Pacífico , Dinâmica Populacional , Especificidade da Espécie , Coluna Vertebral/química , Coluna Vertebral/crescimento & desenvolvimento
3.
Ecol Evol ; 7(19): 8113-8125, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29043060

RESUMO

Herein, we use genetic data from 277 sleeper sharks to perform coalescent-based modeling to test the hypothesis of early Quaternary emergence of the Greenland shark (Somniosus microcephalus) from ancestral sleeper sharks in the Canadian Arctic-Subarctic region. Our results show that morphologically cryptic somniosids S. microcephalus and Somniosus pacificus can be genetically distinguished using combined mitochondrial and nuclear DNA markers. Our data confirm the presence of genetically admixed individuals in the Canadian Arctic and sub-Arctic, and temperate Eastern Atlantic regions, suggesting introgressive hybridization upon secondary contact following the initial species divergence. Conservative substitution rates fitted to an Isolation with Migration (IM) model indicate a likely species divergence time of 2.34 Ma, using the mitochondrial sequence DNA, which in conjunction with the geographic distribution of admixtures and Pacific signatures likely indicates speciation associated with processes other than the closing of the Isthmus of Panama. This time span coincides with further planetary cooling in the early Quaternary period followed by the onset of oscillating glacial-interglacial cycles. We propose that the initial S. microcephalus-S. pacificus split, and subsequent hybridization events, were likely associated with the onset of Pleistocene glacial oscillations, whereby fluctuating sea levels constrained connectivity among Arctic oceanic basins, Arctic marginal seas, and the North Atlantic Ocean. Our data demonstrates support for the evolutionary consequences of oscillatory vicariance via transient oceanic isolation with subsequent secondary contact associated with fluctuating sea levels throughout the Quaternary period-which may serve as a model for the origins of Arctic marine fauna on a broad taxonomic scale.

4.
PLoS One ; 9(7): e103384, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25068584

RESUMO

Spiny dogfish (Squalus acanthias) are assumed to be a highly migratory species, making habitual north-south migrations throughout their northwestern Atlantic United States (U.S.) range. Also assumed to be a benthic species, spiny dogfish stock structure is estimated through Northeast Fisheries Science Center (NEFSC) bottom-trawl surveys. Recent anomalies in population trends, including a recent four-fold increase in estimated spawning stock biomass, suggest alternative movement patterns could exist for this shark species. To obtain a better understanding of the horizontal and vertical movement dynamics of this species, Microwave Telemetry pop-up satellite archival X-Tags were attached to forty adult spiny dogfish at the northern (Gulf of Maine) and southern (North Carolina) extents of their core U.S. geographic range. Reconstructed geolocation tracks ranging in lengths from two to 12 months suggest that the seasonal migration patterns appear to be local in nature to each respective northern and southern deployment site, differing from previously published migration paradigms. Differences in distance and direction traveled between seasonal geolocations possibly indicate separate migratory patterns between groups. Kernel utilization distribution models also suggest strong separate core home ranges. Significant differences in seasonal temperature and depths between the two regions further substantiate the possibility of separate regional movement patterns between the two groups. Vertical utilization also suggests distinct diel patterns and that this species may not utilize the benthos as previously thought, potentially decreasing availability to benthic gear.


Assuntos
Sistemas de Identificação Animal/métodos , Pesqueiros/métodos , Comunicações Via Satélite , Squalus acanthias/fisiologia , Natação/fisiologia , Sistemas de Identificação Animal/instrumentação , Migração Animal/fisiologia , Animais , Oceano Atlântico , Feminino , Geografia , Comportamento de Retorno ao Território Vital/fisiologia , Maine , Masculino , Massachusetts , Modelos Biológicos , Movimento/fisiologia , North Carolina , Estações do Ano , Temperatura , Fatores de Tempo , Virginia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA