Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 46(11): 3611-3627, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37431820

RESUMO

Research on C4 and C3-C4 photosynthesis has attracted significant attention because the understanding of the genetic underpinnings of these traits will support the introduction of its characteristics into commercially relevant crop species. We used a panel of 19 taxa of 18 Brassiceae species with different photosynthesis characteristics (C3 and C3-C4) with the following objectives: (i) create draft genome assemblies and annotations, (ii) quantify orthology levels using synteny maps between all pairs of taxa, (iii) ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠describe the phylogenetic relatedness across all the species, and (iv) track the evolution of C3-C4 intermediate photosynthesis in the Brassiceae tribe. Our results indicate that the draft de novo genome assemblies are of high quality and cover at least 90% of the gene space. Therewith we more than doubled the sampling depth of genomes of the Brassiceae tribe that comprises commercially important as well as biologically interesting species. The gene annotation generated high-quality gene models, and for most genes extensive upstream sequences are available for all taxa, yielding potential to explore variants in regulatory sequences. The genome-based phylogenetic tree of the Brassiceae contained two main clades and indicated that the C3-C4 intermediate photosynthesis has evolved five times independently. Furthermore, our study provides the first genomic support of the hypothesis that Diplotaxis muralis is a natural hybrid of D. tenuifolia and D. viminea. Altogether, the de novo genome assemblies and the annotations reported in this study are a valuable resource for research on the evolution of C3-C4 intermediate photosynthesis.


Assuntos
Brassicaceae , Fotossíntese , Filogenia , Fotossíntese/genética , Brassicaceae/genética , Genômica
2.
Bioinform Adv ; 4(1): vbae074, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841126

RESUMO

Motivation: Identifying cis-regulatory elements (CREs) is crucial for analyzing gene regulatory networks. Next generation sequencing methods were developed to identify CREs but represent a considerable expenditure for targeted analysis of few genomic loci. Thus, predicting the outputs of these methods would significantly cut costs and time investment. Results: We present Predmoter, a deep neural network that predicts base-wise Assay for Transposase Accessible Chromatin using sequencing (ATAC-seq) and histone Chromatin immunoprecipitation DNA-sequencing (ChIP-seq) read coverage for plant genomes. Predmoter uses only the DNA sequence as input. We trained our final model on 21 species for 13 of which ATAC-seq data and for 17 of which ChIP-seq data was publicly available. We evaluated our models on Arabidopsis thaliana and Oryza sativa. Our best models showed accurate predictions in peak position and pattern for ATAC- and histone ChIP-seq. Annotating putatively accessible chromatin regions provides valuable input for the identification of CREs. In conjunction with other in silico data, this can significantly reduce the search space for experimentally verifiable DNA-protein interaction pairs. Availability and implementation: The source code for Predmoter is available at: https://github.com/weberlab-hhu/Predmoter. Predmoter takes a fasta file as input and outputs h5, and optionally bigWig and bedGraph files.

3.
J Plant Physiol ; 282: 153928, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36780758

RESUMO

The entry of carbon dioxide from the atmosphere into the biosphere is mediated by the enzyme Rubisco, which catalyzes the carboxylation of ribulose 1,5-bisphosphate (RuBP) as the entry reaction of the Calvin Benson Bassham cycle (CBBC), leading to the formation of 2 molecules of 3-phosphoglyceric acid (3PGA) per CO2 fixed. 3PGA is reduced to triose phosphates at the expense of NADPH + H+ and ATP that are provided by the photosynthetic light reactions. Triose phosphates are the principal products of the CBBC and the precursors for almost any compound in the biosphere.


Assuntos
Fosfatos , Fotossíntese , Trioses , Ribulose-Bifosfato Carboxilase/metabolismo , Dióxido de Carbono
4.
Front Plant Sci ; 14: 1024981, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324717

RESUMO

Cyanobacteria are a promising platform for the production of the triterpene squalene (C30), a precursor for all plant and animal sterols, and a highly attractive intermediate towards triterpenoids, a large group of secondary plant metabolites. Synechocystis sp. PCC 6803 natively produces squalene from CO2 through the MEP pathway. Based on the predictions of a constraint-based metabolic model, we took a systematic overexpression approach to quantify native Synechocystis gene's impact on squalene production in a squalene-hopene cyclase gene knock-out strain (Δshc). Our in silico analysis revealed an increased flux through the Calvin-Benson-Bassham cycle in the Δshc mutant compared to the wildtype, including the pentose phosphate pathway, as well as lower glycolysis, while the tricarboxylic acid cycle predicted to be downregulated. Further, all enzymes of the MEP pathway and terpenoid synthesis, as well as enzymes from the central carbon metabolism, Gap2, Tpi and PyrK, were predicted to positively contribute to squalene production upon their overexpression. Each identified target gene was integrated into the genome of Synechocystis Δshc under the control of the rhamnose-inducible promoter Prha. Squalene production was increased in an inducer concentration dependent manner through the overexpression of most predicted genes, which are genes of the MEP pathway, ispH, ispE, and idi, leading to the greatest improvements. Moreover, we were able to overexpress the native squalene synthase gene (sqs) in Synechocystis Δshc, which reached the highest production titer of 13.72 mg l-1 reported for squalene in Synechocystis sp. PCC 6803 so far, thereby providing a promising and sustainable platform for triterpene production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA