Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 52(13): 7399-7408, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29860835

RESUMO

The occurrence and intensity of (harmful) algal blooms (HABs) have increased through the years due to rapidly changing environmental conditions. At the same time, the demand for low-cost instrumentation has increased substantially, enabling the real-time monitoring and early-stage detection of HABs. To meet this challenge, we have developed a compact multi-wavelength fluorometer for less than 400 USD. This is possible by using readily available and low-cost optical and electronic components. Its modular design results in a highly versatile and flexible monitoring tool. The algae detection module enables a continuous identification and control of relevant algal groups based on their spectral characteristics with a detection limit of 10 cells per liter. Besides its usage as a benchtop module in the laboratory, the algae module has been integrated into submersible housings and applied in coastal environments. During its first in situ application in the Port of Genoa, seawater samples of mixed algal composition were used to demonstrate the successful discrimination of cyanobacteria and dinophytes as well-known toxin producing classes. Fabrication, operation, and performance as well as its first in situ application are addressed.


Assuntos
Cianobactérias , Dinoflagellida , Proliferação Nociva de Algas , Plantas , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA