Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 30(2): 2338-2352, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209376

RESUMO

The development of gradient index free-form micro-optic components dedicated to the mid-infrared range is challenging due to the lack of appropriate technology. We propose a method for developing gradient index components for broadband infrared range beyond the transmission window of silicate glass based on nanostructurization using a stack-and-draw fiber drawing technique. A proof-of-concept microlens is developed and verified experimentally in the wavelength range 1.5-4.3 µm. The microlenses are composed of a set of nanorods with a diameter of 940 nm made of a pair of SiO2-PbO-Bi2O3-Ga2O3 based glasses ordered into the preliminary calculated binary pattern. The pattern forms effectively continuous parabolic refractive index distribution for infrared range according to Maxwell-Garnett effective medium model. The development of individual microlenses with a diameter of 118 µm and focal length of 278 µm at the wavelength of 3.75 µm are reported. A large array of 737 microlenses with an individual diameter of 125 µm and focal length of 375 µm is also presented and analyzed.

2.
Opt Lett ; 44(22): 5505-5508, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730094

RESUMO

Improved long-wavelength transmission and supercontinuum (SC) generation is demonstrated by antireflective (AR) nanoimprinting and tapering of chalcogenide photonic crystal fibers (PCFs). Using a SC source input spanning from 1 to 4.2 µm, the total transmission of a 15 µm core diameter PCF was improved from ∼53% to ∼74% by nanoimprinting of AR structures on both input and output facets of the fiber. Through a combined effect of reduced reflection and redshifting of the spectrum to 5 µm, the relative transmission of light >3.5 µm in the same fiber was increased by 60.2%. Further extension of the spectrum to 8 µm was achieved using tapered fibers. The spectral broadening dynamics and output power were investigated using different taper parameters and pulse repetition rates.

3.
J Chem Phys ; 150(1): 014505, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30621415

RESUMO

The chemical and structural homogeneity of selenide glasses produced by mechanical homogenization of the melt in a rocking furnace is investigated by Raman and Energy Dispersive Spectroscopy (EDS). Both techniques demonstrate that the glass is macroscopically homogeneous along the entire length of a 6 cm rod. EDS imaging performed over four orders of magnitude in scale further confirms that the glass is homogeneous down to the sub-micron scale. An estimate of the diffusion coefficient from experimental viscosity data shows that the diffusion length is far larger than the resolution of EDS and therefore confirms that the glass is homogeneous at any length scale. In order to investigate a systematic mismatch in physical properties reported in the literature for glasses produced by extended static homogenization, two germanium selenide samples are produced under the same conditions except for the homogenization step: one in a rocking furnace for 10 h and the other in a static furnace for 192 h. No difference in physical properties is found between the two glasses. The properties of an ultra-high purity glass are also found to be identical. The origin of the systematic deviation reported in the literature for germanium selenide glasses is therefore still unknown, but the present results demonstrate that homogeneity or dryness does not have a significant contribution in contrast to previous suggestions. The implications of glass homogeneity for technological applications and industrial production are discussed.

4.
Opt Express ; 25(13): 15336-15348, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28788961

RESUMO

The trade-off between the spectral bandwidth and average output power from chalcogenide fiber-based mid-infrared supercontinuum sources is one of the major challenges towards practical application of the technology. In this paper we address this challenge through tapering of large-mode-area chalcogenide photonic crystal fibers. Compared to previously reported step-index fiber tapers the photonic crystal fiber structure ensures single-mode propagation, which improves the beam quality and reduces losses in the taper due to higher-order mode stripping. By pumping the tapered fibers at 4 µm using a MHz optical parametric generation source, and choosing an appropriate length of the untapered fiber segments, the output could be tailored for either the broadest bandwidth from 1 to 11.5 µm with 35.4 mW average output power, or the highest output power of 57.3 mW covering a spectrum from 1 to 8 µm.

5.
Opt Express ; 24(11): 12406-13, 2016 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-27410155

RESUMO

A more than 1.5 octave-spanning mid-infrared supercontinuum (1.2 to 3.6 µm) is generated by pumping a As2S3-silica "double-nanospike" waveguide via a femtosecond Cr:ZnS laser at 2.35 µm. The combination of the optimized group velocity dispersion and extremely high nonlinearity provided by the As2S3-silica hybrid waveguide enables a ~100 pJ level pump pulse energy threshold for octave-spanning spectral broadening at a repetition rate of 90 MHz. Numerical simulations show that the generated supercontinuum is highly coherent over the entire spanning wavelength range. The results are important for realization of a high repetition rate octave-spanning frequency comb in the mid-infrared spectral region.

6.
Opt Express ; 24(8): 7977-86, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27137239

RESUMO

A highly birefringent polarization-maintaining chalcogenide microstructured optical fiber (MOF) covering the 3-8.5 µm wavelength range has been realized for the first time. The fiber cross-section consists of 3 rings of circular air holes with 2 larger holes adjacent to the core. Birefringence properties are calculated by using the vector finite-element method and are compared to the experimental ones. The group birefringence is 1.5x10-3 and fiber losses are equal to 0.8 dB/m at 7.55 µm.

7.
Opt Express ; 23(3): 3282-91, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836186

RESUMO

A low-loss suspended core As(38)Se(62) fiber with core diameter of 4.5 µm and a zero-dispersion wavelength of 3.5 µm was used for mid-infrared supercontinuum generation. The dispersion of the fiber was measured from 2.9 to 4.2 µm and was in good correspondence with the calculated dispersion. An optical parametric amplifier delivering 320 fs pulses with a peak power of 14.8 kW at a repetition rate of 21 MHz was used to pump 18 cm of suspended core fiber at different wavelengths from 3.3 to 4.7 µm. By pumping at 4.4 µm with a peak power of 5.2 kW coupled to the fiber a supercontinuum spanning from 1.7 to 7.5 µm with an average output power of 15.6 mW and an average power >5.0 µm of 4.7 mW was obtained.

8.
Opt Lett ; 39(17): 5216-9, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25166113

RESUMO

A double-nanospike As2S3-silica hybrid waveguide structure is reported. The structure comprises nanotapers at input and output ends of a step-index waveguide with a subwavelength core (1 µm in diameter), with the aim of increasing the in-coupling and out-coupling efficiency. The design of the input nanospike is numerically optimized to match both the diameter and divergence of the input beam, resulting in efficient excitation of the fundamental mode of the waveguide. The output nanospike is introduced to reduce the output beam divergence and the strong endface Fresnel reflection. The insertion loss of the waveguide is measured to be ∼2 dB at 1550 nm in the case of free-space in-coupling, which is ∼7 dB lower than the previously reported single-nanospike waveguide. By pumping a 3-mm-long waveguide at 1550 nm using a 60-fs fiber laser, an octave-spanning supercontinuum (from 0.8 to beyond 2.5 µm) is generated at 38 pJ input energy.

9.
Opt Express ; 21(12): 14643-8, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23787652

RESUMO

The realization of an all-solid microstructured optical fiber based on chalcogenide glasses was achieved. The fiber presents As(2)S(3) inclusions selected as low refractive index material (n = 2.4) embedded in a As(38)Se(62) glass matrix (n = 2.8). The single mode regime of the fiber was demonstrated both theoretically by multipole method calculations and experimentally by near field measurements. Optical transmission measurements of the microstructured fiber and single index fibers made of the initial glasses reveal an excess of losses as high as 6-7 dB/m. This excess is not due to the guide geometry but can be explained by the presence of defects in the glass interface regions.


Assuntos
Calcogênios/química , Fibras Ópticas , Refratometria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização
10.
Molecules ; 18(5): 5373-88, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23666005

RESUMO

Chalcogenide glasses are based on sulfur, selenium and tellurium elements, and have been studied for several decades regarding different applications. Among them, selenide glasses exhibit excellent infrared transmission in the 1 to 15 µm region. Due to their good thermo-mechanical properties, these glasses could be easily shaped into optical devices such as lenses and optical fibers. During the past decade of research, selenide glass fibers have been proved to be suitable for infrared sensing in an original spectroscopic method named Fiber Evanescent Wave Spectroscopy (FEWS). FEWS has provided very nice and promising results, for example for medical diagnosis. Then, some sophisticated fibers, also based on selenide glasses, were developed: rare-earth doped fibers and microstructured fibers. In parallel, the study of telluride glasses, which can have transmission up to 28 µm due to its atom heaviness, has been intensified thanks to the DARWIN mission led by the European Space Agency (ESA). The development of telluride glass fiber enables a successful observation of CO2 absorption band located around 15 µm. In this paper we review recent results obtained in the Glass and Ceramics Laboratory at Rennes on the development of selenide to telluride glass optical fibers, and their use for spectroscopy from the mid to the far infrared ranges.


Assuntos
Fibras Ópticas , Selênio/química , Telúrio/química , Espectrofotometria Infravermelho/instrumentação , Espectrofotometria Infravermelho/métodos
11.
Opt Express ; 20(26): B104-9, 2012 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-23262839

RESUMO

A compact second-order Stokes Brillouin fiber laser made of microstructured chalcogenide fiber is reported for the first time. This laser required very low pump power for Stokes conversion: 6 mW for first order lasing and only 30 mW for second order lasing with nonresonant pumping. We also show linewidth-narrowing as well as intensity noise reduction for both the 1st and 2nd order Stokes component when compared to that of the pump source.

12.
Opt Lett ; 37(7): 1157-9, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22466180

RESUMO

Relative intensity noise and frequency noise have been measured for the first time for a single-frequency Brillouin chalcogenide As38Se62 fiber laser. This is also the first demonstration of a compact suspended-core fiber Brillouin laser, which exhibits a low threshold power of 22 mW and a slope efficiency of 26% for nonresonant pumping.

13.
Opt Lett ; 37(22): 4576-8, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23164843

RESUMO

We report on all-optical wavelength conversion of a 56 Gb/s differential quadrature phase shift keying signal and a 42.7 Gb/s on-off keying signal. Wavelength conversion is based on four-wave mixing effect in a 1 m long highly nonlinear GeAsSe chalcogenide fiber. The high nonlinearity of the fiber allows low-power penalty operation with a total average power of less than 60 mW.

14.
Opt Express ; 19(26): B653-60, 2011 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-22274084

RESUMO

We report a chalcogenide suspended-core fiber with ultra-high nonlinearity and low attenuation loss. The glass composition is As(38)Se(62).With a core diameter as small as 1.13 µm, a record Kerr nonlinearity of 46,000 W(-1) km(-1) is demonstrated with attenuation loss of 0.9 dB/m. Four-wave mixing is experimented by using a 1m-long chalcogenide fiber for 10 GHz and 42.7 GHz signals. Four-wave mixing efficiencies of -5.6 dB at 10 GHz and -17.5 dB at 42.7 GHz are obtained. We also observed higher orders of four-wave mixing for both repetition rates.

15.
Opt Express ; 18(9): 9107-12, 2010 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-20588758

RESUMO

We report significant advances in the fabrication of low loss chalcogenide microstructured optical fiber (MOF). This new method, consisting in molding the glass in a silica cast made of capillaries and capillary guides, allows the development of various designs of fibers, such as suspended core, large core or small core MOFs. After removing the cast in a hydrofluoric acid bath, the preform is drawn and the design is controlled using a system applying differential pressure in the holes. Fiber losses, which are the lowest recorded so far for selenium based MOFs, are equal to the material losses, meaning that the process has no effect on the glass quality.

16.
Appl Opt ; 48(19): 3860-5, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19571947

RESUMO

We present the first fabrication, to the best of our knowledge, of chalcogenide microstructured optical fibers in Te-As-Se glass, their optical characterization, and numerical simulations in the middle infrared. In a first fiber, numerical simulations exhibit a single-mode behavior at 3.39 and 9.3 microm, in good agreement with experimental near-field captures at 9.3 microm. The second fiber is not monomode between 3.39 and 9.3 microm, but the fundamental losses are 9 dB/m at 3.39 microm and 6 dB/m at 9.3 microm. The experimental mode field diameters are compared to the theoretical ones with a good accordance.

17.
ACS Appl Mater Interfaces ; 11(2): 2441-2447, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30576098

RESUMO

Flexible, large-area, and low-cost thermal sensing networks with high spatial and temporal resolution are of profound importance in addressing the increasing needs for industrial processing, medical diagnosis, and military defense. Here, a thermoelectric (TE) fiber is fabricated by thermally codrawing a macroscopic preform containing a semiconducting glass core and a polymer cladding to deliver thermal sensor functionalities at fiber-optic length scales, flexibility, and uniformity. The resulting TE fiber sensor operates in a wide temperature range with high thermal detection sensitivity and accuracy, while offering ultraflexibility with the bending curvature radius below 2.5 mm. Additionally, a single TE fiber can either sense the spot temperature variation or locate the heat/cold spot on the fiber. As a proof of concept, a two-dimensional 3 × 3 fiber array is woven into a textile to simultaneously detect the temperature distribution and the position of heat/cold source with the spatial resolution of millimeter. Achieving this may lead to the realization of large-area, flexible, and wearable temperature sensing fabrics for wearable electronics and advanced artificial intelligence applications.

18.
Appl Opt ; 47(32): 6014-21, 2008 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-19002225

RESUMO

We report several small-core chalcogenide microstructured fibers fabricated by the "Stack & Draw" technique from Ge(15)Sb(20)S(65) glass with regular profiles. Mode field diameters and losses have been measured at 1.55 microm. For one of the presented fibers, the pitch is 2.5 microm, three times smaller than that already obtained in our previous work, and the corresponding mode field diameter is now as small as 3.5 microm. This fiber, obtained using a two step "Stack & Draw" technique, is single-mode at 1.55 microm from a practical point of view. We also report the first measurement of the attenuation between 1 and 3.5 microm of a chalcogenide microstructured fiber. Experimental data concerning fiber attenuation and mode field diameter are compared with calculations. Finally, the origin of fiber attenuation and the nonlinearity of the fibers are discussed.

19.
J Phys Chem B ; 109(13): 6130-5, 2005 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16851676

RESUMO

Some resolved solid state (77)Se NMR spectra are presented in the Te(x)Se(1-x) vitreous system at ambient temperature. They exhibit three different kinds of Se lines assigned to the following Se atom neighborhoods: Se-Se-Se, Se-Se-Te, and Te-Se-Te. Different models were considered to describe the way the Se and Te atoms are linked into the chains: clustering process, homogeneous distribution, random distribution. Finally, thanks to the measurements of the relative intensities of the lines, it appears that Se and Te atoms are mainly randomly distributed with a small preference for heteropolar bonds. The (125)Te spectra are also shown but their resolution is too weak to be informative concerning the vitreous network.

20.
Materials (Basel) ; 7(9): 6120-6129, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-28788180

RESUMO

An original way to obtain fibers with special chromatic dispersion and single-mode behavior is to consider microstructured optical fibers (MOFs). These fibers present unique optical properties thanks to the high degree of freedom in the design of their geometrical structure. In this study, the first all-solid all-chalcogenide MOFs exhibiting photonic bandgap transmission have been achieved and optically characterized. The fibers are made of an As38Se62 matrix, with inclusions of Te20As30Se50 glass that shows a higher refractive index (n = 2.9). In those fibers, several transmission bands have been observed in mid infrared depending on the geometry. In addition, for the first time, propagation by photonic bandgap effect in an all-chalcogenide MOF has been observed at 3.39 µm, 9.3 µm, and 10.6 µm. The numerical simulations based on the optogeometric properties of the fibers agree well with the experimental characterizations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA