Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 25(3): 511-22, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24231659

RESUMO

The thiazide-sensitive NaCl cotransporter (NCC) of the renal distal convoluted tubule (DCT) controls ion homeostasis and arterial BP. Loss-of-function mutations of NCC cause renal salt wasting with arterial hypotension (Gitelman syndrome). Conversely, mutations in the NCC-regulating WNK kinases or kelch-like 3 protein cause familial hyperkalemic hypertension. Here, we performed automated sorting of mouse DCTs and microarray analysis for comprehensive identification of novel DCT-enriched gene products, which may potentially regulate DCT and NCC function. This approach identified protein phosphatase 1 inhibitor-1 (I-1) as a DCT-enriched transcript, and immunohistochemistry revealed I-1 expression in mouse and human DCTs and thick ascending limbs. In heterologous expression systems, coexpression of NCC with I-1 increased thiazide-dependent Na(+) uptake, whereas RNAi-mediated knockdown of endogenous I-1 reduced NCC phosphorylation. Likewise, levels of phosphorylated NCC decreased by approximately 50% in I-1 (I-1(-/-)) knockout mice without changes in total NCC expression. The abundance and phosphorylation of other renal sodium-transporting proteins, including NaPi-IIa, NKCC2, and ENaC, did not change, although the abundance of pendrin increased in these mice. The abundance, phosphorylation, and subcellular localization of SPAK were similar in wild-type (WT) and I-1(-/-) mice. Compared with WT mice, I-1(-/-) mice exhibited significantly lower arterial BP but did not display other metabolic features of NCC dysregulation. Thus, I-1 is a DCT-enriched gene product that controls arterial BP, possibly through regulation of NCC activity.


Assuntos
Hipotensão/enzimologia , Túbulos Renais Distais/enzimologia , Proteínas/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Animais , Proteínas de Transporte de Ânions/metabolismo , Pressão Sanguínea , Feminino , Humanos , Alça do Néfron/enzimologia , Masculino , Camundongos , Camundongos Transgênicos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/genética , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Transportadores de Sulfato , Regulação para Cima , Xenopus
2.
J Virol ; 82(9): 4656-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18305051

RESUMO

The foot-and-mouth disease virus (FMDV) leader proteinase (L(pro)) self-processes inefficiently at the L(pro)/VP4 cleavage site LysLeuLys*GlyAlaGly (* indicates cleaved peptide bond) when the leucine at position P2 is replaced by phenylalanine. Molecular modeling and energy minimization identified the L(pro) residue L143 as being responsible for this discrimination. The variant L(pro) L143A self-processed efficiently at the L(pro)/VP4 cleavage site containing P2 phenylalanine, whereas the L143M variant did not. L(pro) L143A self-processing at the eIF4GII sequence AspPheGly*ArgGlnThr was improved but showed more-extensive aberrant processing. Residue 143 in L(pro) is occupied only by leucine and methionine in all sequenced FMDV serotypes, implying that these bulky side chains are one determinant of the restricted specificity of L(pro).


Assuntos
Endopeptidases/genética , Endopeptidases/metabolismo , Vírus da Febre Aftosa/enzimologia , Sequência de Aminoácidos , Animais , Hidrólise , Leucina , Modelos Moleculares , Mutação de Sentido Incorreto , Especificidade por Substrato/genética
3.
Hypertension ; 64(1): 178-84, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24799612

RESUMO

Excessive renal efferent sympathetic nerve activity contributes to hypertension in many circumstances. Although both hemodynamic and tubular effects likely participate, most evidence supports a major role for α-adrenergic receptors in mediating the direct epithelial stimulation of sodium retention. Recently, it was reported, however, that norepinephrine activates the thiazide-sensitive NaCl cotransporter (NCC) by stimulating ß-adrenergic receptors. Here, we confirmed this effect and developed an acute adrenergic stimulation model to study the signaling cascade. The results show that norepinephrine increases the abundance of phosphorylated NCC rapidly (161% increase), an effect largely dependent on ß-adrenergic receptors. This effect is not mediated by the activation of angiotensin II receptors. We used immunodissected mouse distal convoluted tubule to show that distal convoluted tubule cells are especially enriched for ß1-adrenergic receptors, and that the effects of adrenergic stimulation can occur ex vivo (79% increase), suggesting they are direct. Because the 2 protein kinases, STE20p-related proline- and alanine-rich kinase (encoded by STK39) and oxidative stress-response kinase 1, phosphorylate and activate NCC, we examined their roles in norepinephrine effects. Surprisingly, norepinephrine did not affect STE20p-related proline- and alanine-rich kinase abundance or its localization in the distal convoluted tubule; instead, we observed a striking activation of oxidative stress-response kinase 1. We confirmed that STE20p-related proline- and alanine-rich kinase is not required for NCC activation, using STK39 knockout mice. Together, the data provide strong support for a signaling system involving ß1-receptors in the distal convoluted tubule that activates NCC, at least in part via oxidative stress-response kinase 1. The results have implications about device- and drug-based treatment of hypertension.


Assuntos
Hipertensão/metabolismo , Túbulos Renais Distais/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Sistema Nervoso Simpático/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Túbulos Renais Distais/efeitos dos fármacos , Camundongos , Norepinefrina/farmacologia , Fosforilação/efeitos dos fármacos , Receptores Adrenérgicos beta 1/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA