Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2372: 123-144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34417748

RESUMO

Long non-coding RNAs (lncRNAs) have been postulated to function in a number of DNA-based processes, most notably transcription. The detection of lncRNAs in situ can offer insights into their function. Fluorescence in situ hybridization (FISH) enables the detection of specific nucleic acid sequences, including lncRNAs, within individual cells. Current RNA FISH techniques can inform both the localization and expression level of RNA transcripts. Together with advances in microscopy, these in situ techniques now allow for visualization and quantification of even lowly expressed or unstable lncRNAs. When combined with detection of associated proteins and chromatin modifications by immunofluorescence, RNA FISH can lend essential insights into lncRNA function. Here, we describe an integrated set of protocols to detect, individually or in combination, specific RNAs, DNAs, proteins, and histone modifications in single cells at high sensitivity using conventional fluorescence microscopy.


Assuntos
RNA Longo não Codificante/genética , DNA , Imunofluorescência , Hibridização in Situ Fluorescente , Microscopia de Fluorescência , Proteínas
2.
Elife ; 82019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30938678

RESUMO

Imprinted X-inactivation silences genes exclusively on the paternally-inherited X-chromosome and is a paradigm of transgenerational epigenetic inheritance in mammals. Here, we test the role of maternal vs. zygotic Polycomb repressive complex 2 (PRC2) protein EED in orchestrating imprinted X-inactivation in mouse embryos. In maternal-null (Eedm-/-) but not zygotic-null (Eed-/-) early embryos, the maternal X-chromosome ectopically induced Xist and underwent inactivation. Eedm-/- females subsequently stochastically silenced Xist from one of the two X-chromosomes and displayed random X-inactivation. This effect was exacerbated in embryos lacking both maternal and zygotic EED (Eedmz-/-), suggesting that zygotic EED can also contribute to the onset of imprinted X-inactivation. Xist expression dynamics in Eedm-/- embryos resemble that of early human embryos, which lack oocyte-derived maternal PRC2 and only undergo random X-inactivation. Thus, expression of PRC2 in the oocyte and transmission of the gene products to the embryo may dictate the occurrence of imprinted X-inactivation in mammals.


Assuntos
Camundongos/embriologia , Complexo Repressor Polycomb 2/metabolismo , Inativação do Cromossomo X , Animais , Camundongos Knockout , Complexo Repressor Polycomb 2/deficiência , RNA Longo não Codificante/metabolismo
3.
Methods Cell Biol ; 141: 259-286, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28882306

RESUMO

The fruit fly, Drosophila melanogaster, is a powerful model system for applying molecular, cellular, and genetic approaches to understanding human tauopathies, including Alzheimer's disease. Here, we provide an introduction to using Drosophila as a tauopathy model system and describe several protocols that we use to analyze human tau protein expressed in flies. Methods to detect tau expression include light and scanning electron microscopy in the fly eye, confocal microscopy of primary neuronal cultures, and preparation of tissue homogenates for separation by sodium dodecyl sulfate polyacrylamide gel electrophoresis with analysis by Western blotting.


Assuntos
Modelos Animais de Doenças , Drosophila melanogaster/metabolismo , Neurônios/patologia , Tauopatias/patologia , Proteínas tau/metabolismo , Animais , Microscopia Confocal , Neurônios/ultraestrutura , Tauopatias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA