Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Biomacromolecules ; 18(1): 77-86, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27997133

RESUMO

While siRNA has tremendous potential for therapeutic applications, advancement is limited by poor delivery systems. Systemically, siRNAs are rapidly degraded, may have off-target silencing, and necessitate high working concentrations. To overcome this, we developed an injectable, guest-host assembled hydrogel between polyethylenimine (PEI) and polyethylene glycol (PEG) for local siRNA delivery. Guest-host modified polymers assembled with siRNAs to form polyplexes that had improved transfection and viability compared to PEI. At higher concentrations, these polymers assembled into shear-thinning hydrogels that rapidly self-healed. With siRNA encapsulation, the assemblies eroded as polyplexes which were active and transfected cells, observed by Cy3-siRNA uptake or GFP silencing in vitro. When injected into rat myocardium, the hydrogels localized polyplex release, observed by uptake of Cy5.5-siRNA and silencing of GFP for 1 week in a GFP-expressing rat. These results illustrate the potential for this system to be applied for therapeutic siRNA delivery, such as in cardiac pathologies.


Assuntos
Sistemas de Liberação de Medicamentos , Inativação Gênica , Hidrogel de Polietilenoglicol-Dimetacrilato/administração & dosagem , Miocárdio/metabolismo , Polietilenoimina/química , Polímeros/administração & dosagem , RNA Interferente Pequeno/genética , Animais , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/antagonistas & inibidores , Proteínas de Fluorescência Verde/genética , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Masculino , Miocárdio/citologia , Polímeros/química , Ratos , Ratos Wistar
2.
Circ Res ; 114(4): 650-9, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24366171

RESUMO

RATIONALE: After myocardial infarction, there is an inadequate blood supply to the myocardium, and the surrounding borderzone becomes hypocontractile. OBJECTIVE: To develop a clinically translatable therapy, we hypothesized that in a preclinical ovine model of myocardial infarction, the modified endothelial progenitor stem cell chemokine, engineered stromal cell-derived factor 1α analog (ESA), would induce endothelial progenitor stem cell chemotaxis, limit adverse ventricular remodeling, and preserve borderzone contractility. METHODS AND RESULTS: Thirty-six adult male Dorset sheep underwent permanent ligation of the left anterior descending coronary artery, inducing an anteroapical infarction, and were randomized to borderzone injection of saline (n=18) or ESA (n=18). Ventricular function, geometry, and regional strain were assessed using cardiac MRI and pressure-volume catheter transduction. Bone marrow was harvested for in vitro analysis, and myocardial biopsies were taken for mRNA, protein, and immunohistochemical analysis. ESA induced greater chemotaxis of endothelial progenitor stem cells compared with saline (P<0.01) and was equivalent to recombinant stromal cell-derived factor 1α (P=0.27). Analysis of mRNA expression and protein levels in ESA-treated animals revealed reduced matrix metalloproteinase 2 in the borderzone (P<0.05), with elevated levels of tissue inhibitor of matrix metalloproteinase 1 and elastin in the infarct (P<0.05), whereas immunohistochemical analysis of borderzone myocardium showed increased capillary and arteriolar density in the ESA group (P<0.01). Animals in the ESA treatment group also had significant reductions in infarct size (P<0.01), increased maximal principle strain in the borderzone (P<0.01), and a steeper slope of the end-systolic pressure-volume relationship (P=0.01). CONCLUSIONS: The novel, biomolecularly designed peptide ESA induces chemotaxis of endothelial progenitor stem cells, stimulates neovasculogenesis, limits infarct expansion, and preserves contractility in an ovine model of myocardial infarction.


Assuntos
Quimiocina CXCL12/farmacologia , Mobilização de Células-Tronco Hematopoéticas/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Animais , Quimiocina CXCL12/genética , Quimiotaxia/efeitos dos fármacos , Circulação Coronária/efeitos dos fármacos , Modelos Animais de Doenças , Desenho de Fármacos , Hemodinâmica/efeitos dos fármacos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Microcirculação/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Engenharia de Proteínas , Carneiro Doméstico , Pesquisa Translacional Biomédica , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/terapia , Remodelação Ventricular/efeitos dos fármacos
3.
Circulation ; 128(11 Suppl 1): S95-104, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-24030426

RESUMO

BACKGROUND: Cell-mediated angiogenic therapy for ischemic heart disease has had disappointing results. The lack of clinical translatability may be secondary to cell death and systemic dispersion with cell injection. We propose a novel tissue-engineered therapy, whereby extracellular matrix scaffold seeded with endothelial progenitor cells (EPCs) can overcome these limitations using an environment in which the cells can thrive, enabling an insult-free myocardial cell delivery to normalize myocardial biomechanics. METHODS AND RESULTS: EPCs were isolated from the long bones of Wistar rat bone marrow. The cells were cultured for 7 days in media or seeded at a density of 5 × 10(6) cells/cm(2) on a collagen/vitronectin matrix. Seeded EPCs underwent ex vivo modification with stromal cell-derived factor-1α (100 ng/mL) to potentiate angiogenic properties and enhance paracrine qualities before construct formation. Scanning electron microscopy and confocal imaging confirmed EPC-matrix adhesion. In vitro vasculogenic potential was assessed by quantifying EPC cell migration and vascular differentiation. There was a marked increase in vasculogenesis in vitro as measured by angiogenesis assay (8 versus 0 vessels/hpf; P=0.004). The construct was then implanted onto ischemic myocardium in a rat model of acute myocardial infarction. Confocal microscopy demonstrated a significant migration of EPCs from the construct to the myocardium, suggesting a direct angiogenic effect. Myocardial biomechanical properties were uniaxially quantified by elastic modulus at 5% to 20% strain. Myocardial elasticity normalized after implant of our tissue-engineered construct (239 kPa versus normal=193, P=0.1; versus infarct=304 kPa, P=0.01). CONCLUSIONS: We demonstrate restoration and normalization of post-myocardial infarction ventricular biomechanics after therapy with an angiogenic tissue-engineered EPC construct.


Assuntos
Células Endoteliais/fisiologia , Células Endoteliais/transplante , Infarto do Miocárdio/cirurgia , Neovascularização Patológica/cirurgia , Engenharia Tecidual/métodos , Animais , Fenômenos Biomecânicos , Movimento Celular/fisiologia , Células Cultivadas , Masculino , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Neovascularização Patológica/patologia , Neovascularização Patológica/fisiopatologia , Distribuição Aleatória , Ratos , Ratos Wistar
4.
Circulation ; 128(11 Suppl 1): S59-68, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-24030422

RESUMO

BACKGROUND: Endothelial progenitor cells (EPCs) possess robust therapeutic angiogenic potential, yet may be limited in the capacity to develop into fully mature vasculature. This problem might be exacerbated by the absence of a neovascular foundation, namely pericytes, with simple EPC injection. We hypothesized that coculturing EPCs with smooth muscle cells (SMCs), components of the surrounding vascular wall, in a cell sheet will mimic the native spatial orientation and interaction between EPCs and SMCs to create a supratherapeutic angiogenic construct in a model of ischemic cardiomyopathy. METHODS AND RESULTS: Primary EPCs and SMCs were isolated from Wistar rats. Confluent SMCs topped with confluent EPCs were spontaneously detached from the Upcell dish to create an SMC-EPC bi-level cell sheet. A rodent ischemic cardiomyopathy model was created by ligating the left anterior descending coronary artery. Rats were then immediately divided into 3 groups: cell-sheet transplantation (n=14), cell injection (n=12), and no treatment (n=13). Cocultured EPCs and SMCs stimulated an abundant release of multiple cytokines in vitro. Increased capillary density and improved blood perfusion in the borderzone elucidated the significant in vivo angiogenic potential of this technology. Most interestingly, however, cell fate-tracking experiments demonstrated that the cell-sheet EPCs and SMCs directly migrated into the myocardium and differentiated into elements of newly formed functional vasculature. The robust angiogenic effect of this cell sheet translated to enhanced ventricular function as demonstrated by echocardiography. CONCLUSIONS: Spatially arranged EPC-SMC bi-level cell-sheet technology facilitated the natural interaction between EPCs and SMCs, thereby creating structurally mature, functional microvasculature in a rodent ischemic cardiomyopathy model, leading to improved myocardial function.


Assuntos
Endotélio Vascular/fisiologia , Isquemia Miocárdica/patologia , Miócitos de Músculo Liso/fisiologia , Neovascularização Patológica/patologia , Células-Tronco/fisiologia , Animais , Técnicas de Cocultura , Endotélio Vascular/patologia , Feminino , Humanos , Masculino , Ratos , Ratos Wistar , Células-Tronco/patologia , Fatores de Tempo
5.
Circulation ; 128(11 Suppl 1): S79-86, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-24030424

RESUMO

BACKGROUND: Exogenously delivered chemokines have enabled neovasculogenic myocardial repair in models of ischemic cardiomyopathy; however, these molecules have short half-lives in vivo. In this study, we hypothesized that the sustained delivery of a synthetic analog of stromal cell-derived factor 1-α (engineered stromal cell-derived factor analog [ESA]) induces continuous homing of endothelial progenitor cells and improves left ventricular function in a rat model of myocardial infarction. METHODS AND RESULTS: Our previously designed ESA peptide was synthesized by the addition of a fluorophore tag for tracking. Hyaluronic acid was chemically modified with hydroxyethyl methacrylate to form hydrolytically degradable hydrogels through free-radical-initiated crosslinking. ESA was encapsulated in hyaluronic acid hydrogels during gel formation, and then ESA release, along with gel degradation, was monitored for more than 4 weeks in vitro. Chemotactic properties of the eluted ESA were assessed at multiple time points using rat endothelial progenitor cells in a transwell migration assay. Finally, adult male Wistar rats (n=33) underwent permanent ligation of the left anterior descending (LAD) coronary artery, and 100 µL of saline, hydrogel alone, or hydrogel+25 µg ESA was injected into the borderzone. ESA fluorescence was monitored in animals for more than 4 weeks, after which vasculogenic, geometric, and functional parameters were assessed to determine the therapeutic benefit of each treatment group. ESA release was sustained for 4 weeks in vitro, remained active, and enhanced endothelial progenitor cell chemotaxis. In addition, ESA was detected in the rat heart >3 weeks when delivered within the hydrogels and significantly improved vascularity, ventricular geometry, ejection fraction, cardiac output, and contractility compared with controls. CONCLUSIONS: We have developed a hydrogel delivery system that sustains the release of a bioactive endothelial progenitor cell chemokine during a 4-week period that preserves ventricular function in a rat model of myocardial infarction.


Assuntos
Quimiocina CXCL12/fisiologia , Células Endoteliais/efeitos dos fármacos , Hidrogéis , Infarto do Miocárdio/tratamento farmacológico , Células-Tronco/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Quimiocina CXCL12/administração & dosagem , Preparações de Ação Retardada , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Injeções , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Ratos , Ratos Wistar , Células-Tronco/metabolismo , Células-Tronco/fisiologia , Função Ventricular Esquerda/fisiologia
6.
J Biomech Eng ; 136(8)2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24860865

RESUMO

Ischemic heart disease is a major health problem worldwide, and current therapies fail to address microrevascularization. Previously, our group demonstrated that the sustained release of novel engineered stromal cell-derived factor 1-a analogue (ESA) limits infarct spreading, collagen deposition, improves cardiac function by promoting angiogenesis in the region surrounding the infarct, and restores the tensile properties of infarcted myocardium. In this study, using a well-established rat model of ischemic cardiomyopathy, we describe a novel and innovative method for analyzing the viscoelastic properties of infarcted myocardium. Our results demonstrate that, compared with a saline control group, animals treated with ESA have significantly improved myocardial relaxation rates, while reducing the transition strain, leading to restoration of left ventricular mechanics.


Assuntos
Quimiocina CXCL12/genética , Quimiocina CXCL12/farmacologia , Elasticidade/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Engenharia de Proteínas , Animais , Quimiocina CXCL12/administração & dosagem , Injeções , Masculino , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Ratos , Ratos Wistar , Viscosidade/efeitos dos fármacos
7.
J Shoulder Elbow Surg ; 22(1): 122-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22521385

RESUMO

BACKGROUND: The relationships between reaming parameters for glenoid-implant surface area and bone loss in total shoulder arthroplasty have not been well established. The hypotheses of this study are: (1) for large version corrections, a large reaming depth of 5 mm is not sufficient to obtain complete glenoid implant contact; (2) glenoid bone is removed in a linear proportion with reaming depth; and (3) initial reamer placement has no effect on glenoid bone removal. METHODS: Ten computer models from computed tomography scans of patients with advanced osteoarthritis were created for computer-simulated reaming as performed during total shoulder arthroplasty. Reaming variables studied included reaming depth, reamer placement, and version correction. The resulting reamed glenoid surface area available for implantation and bone volume removed were calculated for each permutation. RESULTS: Reamed surface area significantly increased with larger depths of reaming (P < .0001) and smaller version corrections (P < .0001). Bone volume removed and reaming depth had a strong quadratic relationship (r(2) = 0.999). With off-center reamer placement, volume removed when deviating in the posterior direction was significantly greater than when deviating in the anterior, superior, or inferior direction (P < .05). CONCLUSION: Performing smaller version corrections allows for greater attainable implant-bone surface contact because increasing reaming depth results in small increases in conforming surface area but large losses in glenoid bone stock. Bone volume removed was most sensitive to off-center position errors in the posterior direction.


Assuntos
Artroplastia de Substituição , Simulação por Computador , Prótese Articular , Escápula/anatomia & histologia , Articulação do Ombro/cirurgia , Idoso , Feminino , Humanos , Masculino , Desenho de Prótese
8.
Acta Biomater ; 138: 1-20, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34743044

RESUMO

This review explores the evolution of the use of hydrogels for craniofacial soft tissue engineering, ranging in complexity from acellular injectable fillers to fabricated, cell-laden constructs with complex compositions and architectures. Addressing both in situ and ex vivo approaches, tissue restoration secondary to trauma or tumor resection is discussed. Beginning with relatively simple epithelia of oral mucosa and gingiva, then moving to more functional units like vocal cords or soft tissues with multilayer branched structures, such as salivary glands, various approaches are presented toward the design of function-driven architectures, inspired by native tissue organization. Multiple tissue replacement paradigms are presented here, including the application of hydrogels as structural materials and as delivery platforms for cells and/or therapeutics. A practical hierarchy is proposed for hydrogel systems in craniofacial applications, based on their material and cellular complexity, spatial order, and biological cargo(s). This hierarchy reflects the regulatory complexity dictated by the Food and Drug Administration (FDA) in the United States prior to commercialization of these systems for use in humans. The wide array of available biofabrication methods, ranging from simple syringe extrusion of a biomaterial to light-based spatial patterning for complex architectures, is considered within the history of FDA-approved commercial therapies. Lastly, the review assesses the impact of these regulatory pathways on the translational potential of promising pre-clinical technologies for craniofacial applications. STATEMENT OF SIGNIFICANCE: While many commercially available hydrogel-based products are in use for the craniofacial region, most are simple formulations that either are applied topically or injected into tissue for aesthetic purposes. The academic literature previews many exciting applications that harness the versatility of hydrogels for craniofacial soft tissue engineering. One of the most exciting developments in the field is the emergence of advanced biofabrication methods to design complex hydrogel systems that can promote the functional or structural repair of tissues. To date, no clinically available hydrogel-based therapy takes full advantage of current pre-clinical advances. This review surveys the increasing complexity of the current landscape of available clinical therapies and presents a framework for future expanded use of hydrogels with an eye toward translatability and U.S. regulatory approval for craniofacial applications.


Assuntos
Hidrogéis , Engenharia Tecidual , Materiais Biocompatíveis , Humanos
9.
J Thorac Cardiovasc Surg ; 157(4): 1479-1490, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30579534

RESUMO

OBJECTIVES: The ventricle undergoes adverse remodeling after myocardial infarction, resulting in abnormal biomechanics and decreased function. We hypothesize that tissue-engineered therapy could minimize postischemic remodeling through mechanical stress reduction and retention of tensile myocardial properties due to improved endothelial progenitor cell retention and intrinsic biomechanical properties of the hyaluronic acid shear-thinning gel. METHODS: Endothelial progenitor cells were harvested from adult Wistar rats and resuspended in shear-thinning gel. The constructs were injected at the border zone of ischemic rat myocardium in an acute model of myocardial infarction. Myocardial remodeling, tensile properties, and hemodynamic function were analyzed: control (phosphate-buffered saline), endothelial progenitor cells, shear-thinning gel, and shear-thinning gel + endothelial progenitor cells. Novel high-resolution, high-sensitivity ultrasound with speckle tracking allowed for global strain analysis. Uniaxial testing assessed tensile biomechanical properties. RESULTS: Shear-thinning gel + endothelial progenitor cell injection significantly increased engraftment and retention of the endothelial progenitor cells within the myocardium compared with endothelial progenitor cells alone. With the use of strain echocardiography, a significant improvement in left ventricular ejection fraction was noted in the shear-thinning gel + endothelial progenitor cell cohort compared with control (69.5% ± 10.8% vs 40.1% ± 4.6%, P = .04). A significant normalization of myocardial longitudinal displacement with subsequent stabilization of myocardial velocity with shear-thinning gel + endothelial progenitor cell therapy compared with control was also evident (0.84 + 0.3 cm/s vs 0.11 ± 0.01 cm/s, P = .03). A significantly positive and higher myocardial strain was observed in shear-thinning gel + endothelial progenitor cell (4.5% ± 0.45%) compared with shear-thinning gel (3.7% ± 0.24%), endothelial progenitor cell (3.5% ± 0.97%), and control (8.6% ± 0.3%, P = .05). A resultant reduction in dynamic stiffness was noted in the shear-thinning gel + endothelial progenitor cell cohort. CONCLUSIONS: This novel injectable shear-thinning hyaluronic acid hydrogel demonstrates stabilization of border zone myocardium with reduction in adverse myocardial remodeling and preservation of myocardial biomechanics. The cellular construct provides a normalization of strain measurements and reduces left ventricular dilatation, thus resulting in improvement of left ventricular function.


Assuntos
Células Progenitoras Endoteliais/transplante , Hemodinâmica , Ácido Hialurônico/administração & dosagem , Infarto do Miocárdio/cirurgia , Miocárdio/patologia , Transplante de Células-Tronco/métodos , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Fenômenos Biomecânicos , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Sobrevivência de Enxerto , Hidrogéis , Injeções , Masculino , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Neovascularização Fisiológica , Ratos Wistar , Recuperação de Função Fisiológica , Estresse Mecânico , Resistência à Tração
10.
J R Soc Interface ; 14(131)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28637915

RESUMO

Cancer remains one of the leading causes of death, albeit enormous efforts to cure the disease. To overcome the major challenges in cancer therapy, we need to have a better understanding of the tumour microenvironment (TME), as well as a more effective means to screen anti-cancer drug leads; both can be achieved using advanced technologies, including the emerging tumour-on-a-chip technology. Here, we review the recent development of the tumour-on-a-chip technology, which integrates microfluidics, microfabrication, tissue engineering and biomaterials research, and offers new opportunities for building and applying functional three-dimensional in vitro human tumour models for oncology research, immunotherapy studies and drug screening. In particular, tumour-on-a-chip microdevices allow well-controlled microscopic studies of the interaction among tumour cells, immune cells and cells in the TME, of which simple tissue cultures and animal models are not amenable to do. The challenges in developing the next-generation tumour-on-a-chip technology are also discussed.


Assuntos
Microfluídica/métodos , Neoplasias/metabolismo , Humanos , Técnicas Analíticas Microfluídicas , Microtecnologia , Modelos Biológicos , Engenharia Tecidual/métodos
11.
Tissue Eng Part C Methods ; 22(1): 1-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26414863

RESUMO

The field of tissue engineering has advanced the development of increasingly biocompatible materials to mimic the extracellular matrix of vascularized tissue. However, a majority of studies instead rely on a multiday inosculation between engineered vessels and host vasculature rather than the direct connection of engineered microvascular networks with host vasculature. We have previously demonstrated that the rapid casting of three-dimensionally-printed (3D) sacrificial carbohydrate glass is an expeditious and a reliable method of creating scaffolds with 3D microvessel networks. Here, we describe a new surgical technique to directly connect host femoral arteries to patterned microvessel networks. Vessel networks were connected in vivo in a rat femoral artery graft model. We utilized laser Doppler imaging to monitor hind limb ischemia for several hours after implantation and thus measured the vascular patency of implants that were anastomosed to the femoral artery. This study may provide a method to overcome the challenge of rapid oxygen and nutrient delivery to engineered vascularized tissues implanted in vivo.


Assuntos
Anastomose Cirúrgica/instrumentação , Prótese Vascular , Membro Posterior/irrigação sanguínea , Isquemia/terapia , Impressão Tridimensional , Reperfusão/instrumentação , Animais , Velocidade do Fluxo Sanguíneo , Implante de Prótese Vascular/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Artéria Femoral/fisiopatologia , Artéria Femoral/cirurgia , Membro Posterior/fisiopatologia , Isquemia/fisiopatologia , Masculino , Ratos , Ratos Wistar , Resultado do Tratamento
12.
J Thorac Cardiovasc Surg ; 150(5): 1268-76, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26293548

RESUMO

OBJECTIVES: The clinical translation of cell-based therapies for ischemic heart disease has been limited because of low cell retention (<1%) within, and poor targeting to, ischemic myocardium. To address these issues, we developed an injectable hyaluronic acid (HA) shear-thinning hydrogel (STG) and endothelial progenitor cell (EPC) construct (STG-EPC). The STG assembles as a result of interactions of adamantine- and ß-cyclodextrin-modified HA. It is shear-thinning to permit delivery via a syringe, and self-heals upon injection within the ischemic myocardium. This directed therapy to the ischemic myocardial border zone enables direct cell delivery to address adverse remodeling after myocardial infarction. We hypothesize that this system will enhance vasculogenesis to improve myocardial stabilization in the context of a clinically translatable therapy. METHODS: Endothelial progenitor cells (DiLDL(+) VEGFR2(+) CD34(+)) were harvested from adult male rats, cultured, and suspended in the STG. In vitro viability was quantified using a live-dead stain of EPCs. The STG-EPC constructs were injected at the border zone of ischemic rat myocardium after acute myocardial infarction (left anterior descending coronary artery ligation). The migration of the enhanced green fluorescent proteins from the construct to ischemic myocardium was analyzed using fluorescent microscopy. Vasculogenesis, myocardial remodeling, and hemodynamic function were analyzed in 4 groups: control (phosphate buffered saline injection); intramyocardial injection of EPCs alone; injection of the STG alone; and treatment with the STG-EPC construct. Hemodynamics and ventricular geometry were quantified using echocardiography and Doppler flow analysis. RESULTS: Endothelial progenitor cells demonstrated viability within the STG. A marked increase in EPC engraftment was observed 1-week postinjection within the treated myocardium with gel delivery, compared with EPC injection alone (17.2 ± 0.8 cells per high power field (HPF) vs 3.5 cells ± 1.3 cells per HPF, P = .0002). A statistically significant increase in vasculogenesis was noted with the STG-EPC construct (15.3 ± 5.8 vessels per HPF), compared with the control (P < .0001), EPC (P < .0001), and STG (P < .0001) groups. Statistically significant improvements in ventricular function, scar fraction, and geometry were noted after STG-EPC treatment compared with the control. CONCLUSIONS: A novel injectable shear-thinning HA hydrogel seeded with EPCs enhanced cell retention and vasculogenesis after delivery to ischemic myocardium. This therapy limited adverse myocardial remodeling while preserving contractility.


Assuntos
Células Progenitoras Endoteliais/transplante , Ácido Hialurônico/química , Isquemia Miocárdica/cirurgia , Miocárdio/patologia , Regeneração , Alicerces Teciduais , Animais , Movimento Celular , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Ecocardiografia Doppler , Células Progenitoras Endoteliais/metabolismo , Fibrose , Genes Reporter , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Hidrogéis , Masculino , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Isquemia Miocárdica/fisiopatologia , Miocárdio/metabolismo , Neovascularização Fisiológica , Ratos Wistar , Recuperação de Função Fisiológica , Fatores de Tempo , Transfecção , Função Ventricular Esquerda , Pressão Ventricular , Remodelação Ventricular , beta-Ciclodextrinas/química
13.
Tissue Eng Part A ; 21(19-20): 2515-25, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26154752

RESUMO

There exists a substantial body of work describing cardiac support devices to mechanically support the left ventricle (LV); however, these devices lack biological effects. To remedy this, we implemented a cell sheet engineering approach utilizing chondrocytes, which in their natural environment produce a relatively elastic extracellular matrix (ECM) for a cushioning effect. Therefore, we hypothesized that a chondrocyte cell sheet applied to infarcted and borderzone myocardium will biologically enhance the ventricular ECM and increase elasticity to augment cardiac function in a model of ischemic cardiomyopathy (ICM). Primary articular cartilage chondrocytes of Wistar rats were isolated and cultured on temperature-responsive culture dishes to generate cell sheets. A rodent ICM model was created by ligating the left anterior descending coronary artery. Rats were divided into two groups: cell sheet transplantation (1.0 × 10(7) cells/dish) and no treatment. The cell sheet was placed onto the surface of the heart covering the infarct and borderzone areas. At 4 weeks following treatment, the decreased fibrotic extension and increased elastic microfiber networks in the infarct and borderzone areas correlated with this technology's potential to stimulate ECM formation. The enhanced ventricular elasticity was further confirmed by the axial stretch test, which revealed that the cell sheet tended to attenuate tensile modulus, a parameter of stiffness. This translated to increased wall thickness in the infarct area, decreased LV volume, wall stress, mass, and improvement of LV function. Thus, the chondrocyte cell sheet strengthens the ventricular biomechanical properties by inducing the formation of elastic microfiber networks in ICM, resulting in attenuated myocardial stiffness and improved myocardial function.


Assuntos
Condrócitos/citologia , Engenharia Tecidual/métodos , Animais , Western Blotting , Cardiomiopatias/metabolismo , Imuno-Histoquímica , Masculino , Ratos , Ratos Wistar
14.
J Thorac Cardiovasc Surg ; 148(3): 1090-7; discussion 1097-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25129603

RESUMO

OBJECTIVES: Cell-based angiogenic therapy for ischemic heart failure has had limited clinical impact, likely related to low cell retention (<1%) and dispersion. We developed a novel, tissue-engineered, hydrogel-based cell-delivery strategy to overcome these limitations and provide prolonged regional retention of myocardial endothelial progenitor cells at high cell dosage. METHODS: Endothelial progenitor cells were isolated from Wistar rats and encapsulated in fibrin gels. In vitro viability was quantified using a fluorescent live-dead stain of transgenic enhanced green fluorescent protein(+) endothelial progenitor cells. Endothelial progenitor cell-laden constructs were implanted onto ischemic rat myocardium in a model of acute myocardial infarction (left anterior descending ligation) for 4 weeks. Intramyocardial cell injection (2 × 10(6) endothelial progenitor cells), empty fibrin, and isolated left anterior descending ligation groups served as controls. Hemodynamics were quantified using echocardiography, Doppler flow analysis, and intraventricular pressure-volume analysis. Vasculogenesis and ventricular geometry were quantified. Endothelial progenitor cell migration was analyzed by using endothelial progenitor cells from transgenic enhanced green fluorescent protein(+) rodents. RESULTS: Endothelial progenitor cells demonstrated an overall 88.7% viability for all matrix and cell conditions investigated after 48 hours. Histologic assessment of 1-week implants demonstrated significant migration of transgenic enhanced green fluorescent protein(+) endothelial progenitor cells from the fibrin matrix to the infarcted myocardium compared with intramyocardial cell injection (28 ± 12.3 cells/high power field vs 2.4 ± 2.1 cells/high power field, P = .0001). We also observed a marked increase in vasculogenesis at the implant site. Significant improvements in ventricular hemodynamics and geometry were present after endothelial progenitor cell-hydrogel therapy compared with control. CONCLUSIONS: We present a tissue-engineered, hydrogel-based endothelial progenitor cell-mediated therapy to enhance cell delivery, cell retention, vasculogenesis, and preservation of myocardial structure and function.


Assuntos
Células Endoteliais/transplante , Infarto do Miocárdio/cirurgia , Neovascularização Fisiológica , Transplante de Células-Tronco , Engenharia Tecidual/métodos , Alicerces Teciduais , Função Ventricular Esquerda , Animais , Técnicas de Cultura de Células , Movimento Celular , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Fibrina/metabolismo , Fibrose , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hemodinâmica , Hidrogéis , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Ratos , Ratos Wistar , Fatores de Tempo , Transfecção , Pressão Ventricular
15.
Circ Heart Fail ; 7(4): 619-26, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24902740

RESUMO

BACKGROUND: Neuregulin-1ß (NRG) is a member of the epidermal growth factor family possessing a critical role in cardiomyocyte development and proliferation. Systemic administration of NRG demonstrated efficacy in cardiomyopathy animal models, leading to clinical trials using daily NRG infusions. This approach is hindered by requiring daily infusions and off-target exposure. Therefore, this study aimed to encapsulate NRG in a hydrogel to be directly delivered to the myocardium, accomplishing sustained localized NRG delivery. METHODS AND RESULTS: NRG was encapsulated in hydrogel, and release over 14 days was confirmed by ELISA in vitro. Sprague-Dawley rats were used for cardiomyocyte isolation. Cells were stimulated by PBS, NRG, hydrogel, or NRG-hydrogel (NRG-HG) and evaluated for proliferation. Cardiomyocytes demonstrated EdU (5-ethynyl-2'-deoxyuridine) and phosphorylated histone H3 positivity in the NRG-HG group only. For in vivo studies, 2-month-old mice (n=60) underwent left anterior descending coronary artery ligation and were randomized to the 4 treatment groups mentioned. Only NRG-HG-treated mice demonstrated phosphorylated histone H3 and Ki67 positivity along with decreased caspase-3 activity compared with all controls. NRG was detected in myocardium 6 days after injection without evidence of off-target exposure in NRG-HG animals. At 2 weeks, the NRG-HG group exhibited enhanced left ventricular ejection fraction, decreased left ventricular area, and augmented borderzone thickness. CONCLUSIONS: Targeted and sustained delivery of NRG directly to the myocardial borderzone augments cardiomyocyte mitotic activity, decreases apoptosis, and greatly enhances left ventricular function in a model of ischemic cardiomyopathy. This novel approach to NRG administration avoids off-target exposure and represents a clinically translatable strategy in myocardial regenerative therapeutics.


Assuntos
Bioengenharia/métodos , Cardiomiopatias/tratamento farmacológico , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Isquemia Miocárdica/tratamento farmacológico , Miócitos Cardíacos/patologia , Neuregulina-1/administração & dosagem , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Proliferação de Células , Células Cultivadas , Preparações de Ação Retardada , Modelos Animais de Doenças , Imuno-Histoquímica , Injeções , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Isquemia Miocárdica/patologia , Isquemia Miocárdica/fisiopatologia , Miocárdio , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley
16.
Ann Thorac Surg ; 95(5): 1808-11, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23608274

RESUMO

Femoral and axillary cannulation for arterial inflow in acute type A aortic dissection are the most commonly used cannulation strategies in current practice. More recently, our group and others have successfully used a central cannulation technique with excellent results. Although this approach has been described, specific technical details have not been clearly defined. In addition, the ideal anatomic characteristics of different types of aortic dissections amenable to central cannulation have not been delineated. The purpose of this brief communication is to describe the technical and procedural details specific to cannulation of the dissected ascending aorta and to propose a classification scheme of ascending aortic dissection anatomy based on difficulty of central cannulation.


Assuntos
Aorta/cirurgia , Aneurisma Aórtico/cirurgia , Dissecção Aórtica/cirurgia , Cateterismo/métodos , Humanos , Estudos Retrospectivos
17.
J Thorac Cardiovasc Surg ; 145(1): 278-84, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23244259

RESUMO

OBJECTIVE: The biomechanical response to a myocardial infarction consists of ventricular remodeling that leads to dilatation, loss of contractile function, abnormal stress patterns, and ultimately heart failure. We hypothesized that intramyocardial injection of our previously designed pro-angiogenic chemokine, an engineered stromal cell-derived factor-1α analog (ESA), improves mechanical properties of the heart after infarction. METHODS: Male rats (n = 54) underwent either sham surgery (n = 17) with no coronary artery ligation or ligation of the left anterior descending artery (n = 37). The rats in the myocardial infarction group were then randomized to receive either saline (0.1 mL, n = 18) or ESA (6 µg/kg, n = 19) injected into the myocardium at 4 predetermined spots around the border zone. Echocardiograms were performed preoperatively and before the terminal surgery. After 4 weeks, the hearts were explanted and longitudinally sectioned. Uniaxial tensile testing was completed using an Instron 5543 Microtester. Optical strain was evaluated using custom image acquisition software, Digi-Velpo, and analyzed in MATLAB. RESULTS: Compared with the saline control group at 4 weeks, the ESA-injected hearts had a greater ejection fraction (71.8% ± 9.0% vs 55.3% ± 12.6%, P = .0004), smaller end-diastolic left ventricular internal dimension (0.686 ± 0.110 cm vs 0.763 ± 0.160 cm, P = .04), greater cardiac output (36 ± 11.6 mL/min vs 26.9 ± 7.3 mL/min, P = .05), and a lower tensile modulus (251 ± 56 kPa vs 301 ± 81 kPa, P = .04). The tensile modulus for the sham group was 195 ± 56 kPa, indicating ESA injection results in a less stiff ventricle. CONCLUSIONS: Direct injection of ESA alters the biomechanical response to myocardial infarction, improving the mechanical properties in the postinfarct heart.


Assuntos
Cardiotônicos/farmacologia , Quimiocina CXCL12/farmacologia , Contração Miocárdica/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/patologia , Função Ventricular/efeitos dos fármacos , Animais , Fenômenos Biomecânicos , Cardiotônicos/administração & dosagem , Cardiotônicos/síntese química , Quimiocina CXCL12/administração & dosagem , Quimiocina CXCL12/síntese química , Desenho Assistido por Computador , Modelos Animais de Doenças , Desenho de Fármacos , Injeções , Masculino , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Ratos , Ratos Wistar , Recuperação de Função Fisiológica , Volume Sistólico/efeitos dos fármacos , Resistência à Tração , Fatores de Tempo , Ultrassonografia , Remodelação Ventricular/efeitos dos fármacos
18.
J Thorac Cardiovasc Surg ; 145(3): 748-56, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23414991

RESUMO

OBJECTIVE: Minimally invasive approaches to mitral valve surgery are increasingly used, but the surgical approach must not compromise the clinical outcome for improved cosmesis. We examined the outcomes of mitral repair performed through right minithoracotomy or median sternotomy. METHODS: Between January 2002 and October 2011, 1011 isolated mitral valve repairs were performed in the University of Pennsylvania health system (455 sternotomies, 556 right minithoracotomies). To account for key differences in preoperative risk profiles, propensity scores identified 201 well-matched patient pairs with mitral regurgitation of any cause and 153 pairs with myxomatous disease. RESULTS: In-hospital mortality was similar between propensity-matched groups (0% vs 0% for the degenerative cohort; 0% vs 0.5%, P = .5 for the overall cohort; in minimally invasive and sternotomy groups, respectively). Incidence of stroke, infection, myocardial infarction, exploration for postoperative hemorrhage, renal failure, and atrial fibrillation also were comparable. Transfusion was less frequent in the minimally invasive groups (11.8% vs 20.3%, P = .04 for the degenerative cohort; 14.0% vs 22.9%, P = .03 for the overall cohort), but time to extubation and discharge was similar. A 99% repair rate was achieved in patients with myxomatous disease, and a minimally invasive approach did not significantly increase the likelihood of a failed repair resulting in mitral valve replacement. Patients undergoing minimally invasive mitral repair were more likely to have no residual post-repair mitral regurgitation (97.4% vs 92.1%, P = .04 for the degenerative cohort; 95.5% vs 89.6%, P = .02 for the overall cohort). In the overall matched cohort, early readmission rates were higher in patients undergoing sternotomies (12.6% vs 4.4%, P = .01). Over 9 years of follow-up, there was no significant difference in long-term survival between groups (P = .8). CONCLUSIONS: In appropriate patients with isolated mitral valve disease of any cause, a right minithoracotomy approach may be used without compromising clinical outcome.


Assuntos
Procedimentos Cirúrgicos Cardíacos/métodos , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Insuficiência da Valva Mitral/cirurgia , Procedimentos Cirúrgicos Cardíacos/mortalidade , Ecocardiografia , Feminino , Mortalidade Hospitalar , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Procedimentos Cirúrgicos Minimamente Invasivos/mortalidade , Insuficiência da Valva Mitral/mortalidade , Pontuação de Propensão , Estatísticas não Paramétricas , Esternotomia , Toracotomia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA