Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Biol ; 22(3): 693-703, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11784848

RESUMO

The Tup1-Ssn6 complex regulates diverse classes of genes in Saccharomyces cerevisiae and serves as a model for corepressor functions in many organisms. Tup1-Ssn6 does not directly bind DNA but is brought to target genes through interactions with sequence-specific DNA binding factors. Full repression by Tup1-Ssn6 appears to require interactions with both the histone tails and components of the general transcription machinery, although the relative contribution of these two pathways is not clear. Here, we map Tup1 locations on two classes of Tup1-Ssn6-regulated genes in vivo via chromatin immunoprecipitations. Distinct profiles of Tup1 are observed on a cell-specific genes and DNA damage-inducible genes, suggesting that alternate repressive architectures may be created on different classes of repressed genes. In both cases, decreases in acetylation of histone H3 colocalize with Tup1. Strikingly, although loss of the Srb10 mediator protein had no effect on Tup1 localization, both histone tail mutations and histone deacetylase mutations crippled the association of Tup1 with target loci. Together with previous findings that Tup1-Ssn6 physically associates with histone deacetylase activities, these results indicate that the repressor complex alters histone modification states to facilitate interactions with histones and that these interactions are required to maintain a stable repressive state.


Assuntos
Proteínas de Ligação a DNA , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Histonas/metabolismo , Proteínas Nucleares , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetilação , Sítios de Ligação/genética , Dano ao DNA/genética , DNA Fúngico/genética , DNA Fúngico/metabolismo , Regulação Fúngica da Expressão Gênica , Histona Desacetilases/metabolismo , Histonas/química , Modelos Biológicos , Mutação
2.
Genetics ; 161(3): 957-69, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12136003

RESUMO

In the yeast Saccharomyces cerevisiae, Tup1, in association with Cyc8 (Ssn6), functions as a general repressor of transcription. Tup1 and Cyc8 are required for repression of diverse families of genes coordinately controlled by glucose repression, mating type, and other mechanisms. This repression is mediated by recruitment of the Cyc8-Tup1 complex to target promoters by sequence-specific DNA-binding proteins. We created a library of XhoI linker insertions and internal in-frame deletion mutations within the TUP1 coding region. Insertion mutations outside of the WD domains were wild type, while insertions within the WD domains induced mutant phenotypes with differential effects on the target genes SUC2, MFA2, RNR2, and HEM13. Deletion mutations confirmed previous findings of two separate repression domains in the N and C termini. The cumulative data suggest that the C-terminal repression domain, located near the first WD repeat, plays the dominant role in repression. Although the N-terminal repression domain is sufficient for partial repression, deletion of this region does not compromise repression. Surprisingly, deletion of the majority of the histone-binding domain of Tup1 also does not significantly reduce repression. The N-terminal region containing potential alpha-helical coiled coils is required for Tup1 oligomerization and association with Cyc8. Association with Cyc8 is required for repression of SUC2, HEM13, and RNR2 but not MFA2 and STE2.


Assuntos
Proteínas Nucleares/genética , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sequência de Bases , Primers do DNA , Dados de Sequência Molecular , Mutagênese Insercional , Regiões Promotoras Genéticas , Proteínas Recombinantes/química , Deleção de Sequência
3.
Crit Rev Oncog ; 19(6): 417-30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25597352

RESUMO

Raf kinase inhibitory protein (RKIP) is known to modulate key signaling cascades and regulate normal physiological processes such as cellular proliferation, differentiation, and apoptosis. The expression of RKIP is found to be downregulated in several cancer metastases and the repressed RKIP expression can be reactivated on treatment with chemotherapeutic agents. RKIP is a proven tumor metastasis suppressor gene and investigating the mechanisms of transcriptional regulation of RKIP is therefore of immense clinical importance. In this review, we discuss the basal expression of RKIP in various tissues and the genetic aspects of the RKIP chromosomal locus including the structure of the RKIP promoter as well as gene regulatory elements such as enhancers. We also review the genetic and epigenetic modulation of RKIP transcription through EZH2, a component of the polycomb repressive complex 2 (PRC2) and sequence specific transcription factors (TFs) BACH1 and Snail. Emerging experimental evidence supports a unifying model in which both these TFs repress RKIP transcription in cancers by recruiting the EZH2 containing repressive complex to the proximal RKIP promoter. Finally, we review the known mechanisms employed by different types of chemotherapeutic agents to activate RKIP expression in cancer cells.


Assuntos
Epigênese Genética , Proteína de Ligação a Fosfatidiletanolamina/genética , Animais , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/patologia , Transcrição Gênica
4.
Yeast ; 23(16): 1151-66, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17133623

RESUMO

The Mig1 DNA-binding protein of Saccharomyces cerevisiae was expressed and purified from yeast and the physical properties were characterized by several methods, including gel filtration, sucrose gradient sedimentation and native gel electrophoresis. Purified Mig1 exists as a monomer with a Stokes' radius of 48 A and a sedimentation coefficient of 3.55 S. Mig1 has an elongated shape with a frictional coefficient of 1.83. The K(d) of purified Mig1 for the SUC2 A site is 2.8 nM and for SUC2 B site 25.8 nM; these values were similar for Mig1 purified from repressed and derepressed cells. Full-length Mig1 expressed in yeast binds more tightly to SUC2 B than bacterially expressed GST-Mig1. Sucrose gradient sedimentation resolved a larger molecular weight form of Mig1 in whole-cell extracts that was not seen in purified samples and may represent a complex with another protein. This complex is found within the nucleus and is seen only in repressed cells. Mig1 exists in multiple phosphorylation states and only less phosphorylated forms of Mig1 are associated with this complex.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Sítios de Ligação , Núcleo Celular/metabolismo , Centrifugação com Gradiente de Concentração , Cromatografia em Gel , Proteínas de Ligação a DNA/isolamento & purificação , Eletroforese/métodos , Regulação Fúngica da Expressão Gênica , Peso Molecular , Proteínas Nucleares/química , Proteínas Nucleares/isolamento & purificação , Proteínas Nucleares/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/isolamento & purificação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , beta-Frutofuranosidase/genética
5.
Arch Biochem Biophys ; 406(1): 47-54, 2002 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12234489

RESUMO

The yeast global transcriptional repressor Tup1 contains 7 WD repeats in its C-terminus that form a beta-propeller-like structure, in which the first and last WD repeats interact to make a closed circle. The WD domains of all proteins tested, including Tup1, form a compact structure resistant to trypsin digestion (Garcia-Higuera et al., Biochemistry 35 (1996) 13985-13994). We found that the in vitro formation of the trypsin-resistant core of Tup1 requires just five WD repeats (WD2-6). Deletion of the ST region between WD1 and WD2 destabilizes the trypsin-resistant core, but maintains Tup1 repression function in vivo. Linker insertion and point mutations in the WD repeats that compromise Tup1 repression function in vivo still maintain the trypsin-resistant core in vitro These results indicate that structural perturbation of the WD domain structure cannot explain the effects of these mutations on Tup1 repression function.


Assuntos
Sequências Repetitivas de Aminoácidos , Saccharomyces cerevisiae/metabolismo , Tripsina/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Repetições de Dinucleotídeos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Mutagênese Insercional , Estrutura Secundária de Proteína , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Deleção de Sequência , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA