Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Ren Fail ; 46(2): 2375741, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38994782

RESUMO

BACKGROUND: The successful treatment and improvement of acute kidney injury (AKI) depend on early-stage diagnosis. However, no study has differentiated between the three stages of AKI and non-AKI patients following heart surgery. This study will fill this gap in the literature and help to improve kidney disease management in the future. METHODS: In this study, we applied Raman spectroscopy (RS) to uncover unique urine biomarkers distinguishing heart surgery patients with and without AKI. Given the amplified risk of renal complications post-cardiac surgery, this approach is of paramount importance. Further, we employed the partial least squares-support vector machine (PLS-SVM) model to distinguish between all three stages of AKI and non-AKI patients. RESULTS: We noted significant metabolic disparities among the groups. Each AKI stage presented a distinct metabolic profile: stage 1 had elevated uric acid and reduced creatinine levels; stage 2 demonstrated increased tryptophan and nitrogenous compounds with diminished uric acid; stage 3 displayed the highest neopterin and the lowest creatinine levels. We utilized the PLS-SVM model for discriminant analysis, achieving over 90% identification rate in distinguishing AKI patients, encompassing all stages, from non-AKI subjects. CONCLUSIONS: This study characterizes the incidence and risk factors for AKI after cardiac surgery. The unique spectral information garnered from this study can also pave the way for developing an in vivo RS method to detect and monitor AKI effectively.


Assuntos
Injúria Renal Aguda , Biomarcadores , Procedimentos Cirúrgicos Cardíacos , Análise Espectral Raman , Urinálise , Humanos , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/urina , Injúria Renal Aguda/etiologia , Análise Espectral Raman/métodos , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Biomarcadores/urina , Urinálise/métodos , Creatinina/urina , Máquina de Vetores de Suporte , Ácido Úrico/urina , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/urina , Complicações Pós-Operatórias/etiologia , Fatores de Risco , Análise dos Mínimos Quadrados
2.
J Formos Med Assoc ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38821736

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) that against programmed cell death protein-1 (PD-1) and its ligand PD-L1 have been approved as a promising treatment of many human cancers. However, the responses to these ICIs were limited in patients with ovarian cancer. Studies have indicated that the response to PD-1/PD-L1 blockade might be correlated with the PD-L1 expression level in cancer cells. Nucleophosmin (NPM/B23) was found to be a potential target for immunotherapy. Whether NPM/B23 plays a role in cancer-associated immunity, such as PD-1/PD-L1 axis, and its underlying mechanisms remain largely unknown in ovarian cancer. METHODS: We applied ovarian cancer cell lines as research models. The effect of modulating PD-L1 by NPM/B23 was subsequently confirmed via Western blot, flow cytometry, qRT-PCR, luciferase reporter assays, and immunoprecipitation. Protein stability and ubiquitin assay assays were used to analyze the interplay between NPM/B23 and NF-ĸB/p65 in PD-L1 regulation. The MOSEC/Luc xenograft mouse model was used to validate the role of NPM/B23-PD-L1 through tumor growth in vivo. RESULTS: Our results revealed that NPM/B23 negatively regulates PD-L1 expression via a protein complex with NF-κB/p65 and through an IFN-γ pathway. Moreover, NPM/B23 inhibitor/modulator sensitized ovarian cancer cells to the anti-PD-1 antibody by regulating PD-L1 expression in the immunocompetent mouse model. Compared to anti-PD-1 antibody alone, a combination of anti-PD-1 antibody and NPM/B23 inhibitor/modulator showed reduced tumorigenesis and increased CD8+ T-cell expansion, thus contributing to prolonged survival on MOSEC/Luc-bearing mouse model. CONCLUSION: Targeting NPM/B23 is a novel and potential therapeutic approach to sensitize ovarian cancer cells to immunotherapy.

3.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894950

RESUMO

Crucial roles in embryo implantation and placentation in humans include the invasion of the maternal decidua by extravillous trophoblasts and the motile behavior of decidual endometrial stromal cells. The effects of the epidermal growth factor (EGF) and GnRH-II in the endometrium take part in early pregnancy. In the present study, we demonstrated the coaction of EGF- and GnRH-II-promoted motility of human decidual endometrial stromal cells, indicating the possible roles of EGF and GnRH-II in embryo implantation and early pregnancy. After obtaining informed consent, we obtained human decidual endometrial stromal cells from decidual tissues from normal pregnancies at 6 to 12 weeks of gestation in healthy women undergoing suction dilation and curettage. Cell motility was evaluated with invasion and migration assays. The mechanisms of EGF and GnRH-II were performed using real-time PCR and immunoblot analysis. The results showed that human decidual tissue and stromal cells expressed the EGF and GnRH-I receptors. GnRH-II-mediated cell motility was enhanced by EGF and was suppressed by the knockdown of the endogenous GnRH-I receptor and EGF receptor with siRNA, revealing that GnRH-II promoted the cell motility of human decidual endometrial stromal cells through the GnRH-I receptor and the activation of Twist and N-cadherin signaling. This new concept regarding the coaction of EGF- and GnRH-promoted cell motility suggests that EGF and GnRH-II potentially affect embryo implantation and the decidual programming of human pregnancy.


Assuntos
Caderinas , Fator de Crescimento Epidérmico , Feminino , Humanos , Gravidez , Caderinas/metabolismo , Movimento Celular , Decídua/metabolismo , Endométrio/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Receptores LHRH/metabolismo , Células Estromais/metabolismo , Trofoblastos/metabolismo
4.
J Obstet Gynaecol ; 43(1): 2161352, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36708516

RESUMO

Adenomyosis is a condition characterised by the invasion of endometrial tissues into the uterine myometrium, the molecular pathogenesis of which remains incompletely elucidated. Lesion profiling with next-generation sequencing (NGS) can lead to the identification of previously unanticipated causative genes and the detection of therapeutically actionable genetic changes. Using an NGS panel that included 275 cancer susceptibility genes, this study examined the occurrence and frequency of somatic mutations in adenomyotic tissue specimens collected from 17 women. Extracted DNA was enriched using targeted formalin-fixed paraffin-embedded tissue cores prior to the identification of lesion-specific variants. The results revealed that KRAS and AT-rich interactive domain 1A (ARID1A) were the two most frequently mutated genes (mutation frequencies: 24% and 12%, respectively). Notably, endometrial atypical hyperplasia did not involve adenomyotic areas. We also identified, for the first time, two potentially pathogenic mutations in the F-box/WD repeat-containing protein 7 (FBXW7) and cohesin subunit SA-2 (STAG2) genes. These findings indicate that mutations in the KRAS, ARID1A, FBXW7 and STAG2 genes may play a critical role in the pathogenesis of adenomyosis. Additional studies are needed to assess whether the utilisation of oncogenic driver mutations can inform the surveillance of patients with adenomyosis who had not undergone hysterectomy.Impact statementWhat is already known on this subject? Although somatic point mutations in the KRAS oncogene have been recently detected in adenomyosis, the molecular underpinnings of this condition remains incompletely elucidated. Lesion profiling with next-generation sequencing (NGS) can lead to the identification of previously unanticipated causative genes and the detection of therapeutically actionable genetic changes.What do the results of this study add? The results of NGS revealed that KRAS and AT-rich interactive domain 1A (ARID1A) were the two most frequently mutated genes (mutation frequencies: 24% and 12%, respectively). We also identified, for the first time, two potentially pathogenic mutations in the F-box/WD repeat-containing protein 7 (FBXW7) and cohesin subunit SA-2 (STAG2) genes.What are the implications of these findings for clinical practice and/or further research? The utilisation of oncogenic driver mutations has the potential to inform the surveillance of patients with adenomyosis who had not undergone hysterectomy.


Assuntos
Adenomiose , Neoplasias Pulmonares , Humanos , Feminino , Proteína 7 com Repetições F-Box-WD/genética , Adenomiose/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Mutação , Sequenciamento de Nucleotídeos em Larga Escala
5.
Int J Mol Sci ; 23(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35269562

RESUMO

Stress-induced phosphoprotein-1 (STIP1)-a heat shock protein (HSP)70/HSP90 adaptor protein-is commonly overexpressed in malignant cells, where it controls proliferation via multiple signaling pathways, including JAK2/STAT3. We have previously shown that STIP1 stabilizes the protein tyrosine kinase JAK2 in cancer cells via HSP90 binding. In this study, we demonstrate that STIP1 may act as a substrate for JAK2 and that phosphorylation of tyrosine residues 134 and 152 promoted STIP1 protein stability, induced its nuclear-cytoplasmic shuttling, and promoted its secretion into the extracellular space. We also found that JAK2-mediated STIP1 phosphorylation enhanced cell viability and increased resistance to cisplatin-induced cell death. Conversely, interference STIP1 with JAK2 interaction-attained either through site-directed mutagenesis or the use of cell-penetrating peptides-decreased JAK2 protein levels, ultimately leading to cell death. On analyzing human ovarian cancer specimens, JAK2 and STIP1 expression levels were found to be positively correlated with each other. Collectively, these results indicate that JAK2-mediated phosphorylation of STIP-1 is critical for sustaining the JAK2/STAT3 signaling pathway in cancer cells.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteínas de Choque Térmico/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Neoplasias Ovarianas/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Cisplatino/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Proteínas de Choque Térmico/química , Humanos , Neoplasias Ovarianas/genética , Fosforilação , Estabilidade Proteica , Transporte Proteico , Transdução de Sinais
6.
J Antimicrob Chemother ; 76(3): 722-728, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33331635

RESUMO

BACKGROUND: Effective ART is crucial for combating the HIV pandemic. Clinically, plasma viral load monitoring to achieve virological suppression is the guide for an optimal ART. The presence of low-level viraemia (LLV) below the definition level of virological failure is a risk factor for ART failure. However, there is no treatment consensus over LLV yet, mainly due to the limitation of standard HIV-RNA genotyping and the resultant insufficient understanding of LLV characteristics. OBJECTIVES: To better profile drug resistance mutations (DRMs) and the associated factors in cases experiencing LLV. METHODS: A prospective observational study was conducted from 2017 to 2019. HIV-DNA was used as an alternative to HIV-RNA for HIV genotyping coupled with deep sequencing for ART-naive and ART-failure cases, as well as those with LLV. RESULTS: Eighty-one ART-naive, 18 ART-failure and 16 LLV cases received HIV genotyping in the study. Three-quarters (12/16) of cases experiencing LLV harboured DRMs. Cases with LLV had higher prevalence of DRMs to NNRTIs than the ART-naive group (69% versus 20%, P < 0.001), but lower DRM prevalence to NRTIs than the ART-failure group (25% versus 61%, P < 0.001). Approximately half of the LLV cases had issues of suboptimal ART compliance/ART interruption, and 68.8% (11/16) did not display drug resistance to their ART at the time of LLV. CONCLUSIONS: HIV DRM profiles in LLV cases were significantly different to those in ART-naive and ART-failure cases. Approaches to consolidate ART compliance and early exploration of potential ART resistance may be needed for cases experiencing LLV episodes.


Assuntos
Fármacos Anti-HIV , Farmacorresistência Viral , Infecções por HIV , HIV-1 , Fármacos Anti-HIV/uso terapêutico , Farmacorresistência Viral/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , HIV-1/genética , Humanos , Mutação , Prevalência , Taiwan/epidemiologia , Centros de Atenção Terciária , Carga Viral , Viremia/tratamento farmacológico , Viremia/epidemiologia
7.
Br J Cancer ; 123(2): 226-239, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32390005

RESUMO

BACKGROUND: Human urothelial carcinoma (UC) has a high tendency to recur and progress to life-threatening advanced diseases. Advanced therapeutic regimens are needed to control UC development and recurrence. METHODS: We pursued in vitro and in vivo studies to understand the ability of a triple combination of gemcitabine, romidepsin, and cisplatin (Gem+Rom+Cis) to modulate signalling pathways, cell death, drug resistance, and tumour development. RESULTS: Our studies verified the ability of Gem+Rom+Cis to synergistically induce apoptotic cell death and reduce drug resistance in various UC cells. The ERK pathway and reactive oxygen species (ROS) played essential roles in mediating Gem+Rom+Cis-induced caspase activation, DNA oxidation and damage, glutathione reduction, and unfolded protein response. Gem+Rom+Cis preferentially induced death and reduced drug resistance in oncogenic H-Ras-expressing UC vs. counterpart cells that was associated with transcriptomic profiles related to ROS, cell death, and drug resistance. Our studies also verified the efficacy and safety of the Gem plus Rom+Cis regimen in controlling UC cell-derived xenograft tumour development and resistance. CONCLUSIONS: More than 80% of UCs are associated with aberrant Ras-ERK pathway. Thus the compensatory combination of Rom with Gem and Cis should be seriously considered as an advanced regimen for treating advanced UCs, especially Ras-ERK-activated UCs.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma de Células de Transição/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Apoptose/efeitos dos fármacos , Carcinoma de Células de Transição/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Depsipeptídeos/farmacologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Recidiva Local de Neoplasia/patologia , Espécies Reativas de Oxigênio/metabolismo , Neoplasias da Bexiga Urinária/patologia , Urotélio/efeitos dos fármacos , Urotélio/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
8.
Sensors (Basel) ; 20(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228249

RESUMO

A surface acoustic wave (SAW) sensor was investigated for its application in C-reactive protein (CRP) detection. Piezoelectric lithium niobate (LiNbO3) substrates were used to study their frequency response characteristics in a SAW sensor with a CRP sensing area. After the fabrication of the SAW sensor, the immobilization process was performed for CRP/anti-CRP interaction. The CRP/anti-CRP interaction can be detected as mass variations in the sensing area. These mass variations may produce changes in the amplitude of sensor response. It was clearly observed that a CRP concentration of 0.1 µg/mL can be detected in the proposed SAW sensor. A good fitting linear relationship between the detected insertion loss (amplitude) and the concentrations of CRP from 0.1 µg/mL to 1 mg/mL was obtained. The detected shifts in the amplitude of insertion loss in SAW sensors for different CRP concentrations may be useful in the diagnosis of risk of cardiovascular diseases.


Assuntos
Proteína C-Reativa , Doenças Cardiovasculares , Som , Proteína C-Reativa/análise , Doenças Cardiovasculares/diagnóstico
9.
Biomacromolecules ; 19(6): 2330-2339, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29808997

RESUMO

Successful siRNA therapy requires suitable delivery systems with targeting moieties such as small molecules, peptides, antibodies, or aptamers. Galactose (Gal) residues recognized by the asialoglycoprotein receptor (ASGPR) can serve as potent targeting moieties for hepatocellular carcinoma (HCC) cells. However, efficient targeting to HCC via galactose moieties rather than normal liver tissues in HCC patients remains a challenge. To achieve more efficient siRNA delivery in HCC, we synthesized various galactoside derivatives and investigated the siRNA delivery capability of nanoparticles modified with those galactoside derivatives. In this study, we assembled lipid/calcium/phosphate nanoparticles (LCP NPs) conjugated with eight types of galactoside derivatives and demonstrated that phenyl ß-d-galactoside-decorated LCP NPs (L4-LCP NPs) exhibited a superior siRNA delivery into HCC cells compared to normal hepatocytes. VEGF siRNAs delivered by L4-LCP NPs downregulated VEGF expression in HCC in vitro and in vivo and led to a potent antiangiogenic effect in the tumor microenvironment of a murine orthotopic HCC model. The efficient delivery of VEGF siRNA by L4-LCP NPs that resulted in significant tumor regression indicates that phenyl galactoside could be a promising HCC-targeting ligand for therapeutic siRNA delivery to treat liver cancer.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Galactose , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas , RNA Interferente Pequeno , Animais , Receptor de Asialoglicoproteína/antagonistas & inibidores , Receptor de Asialoglicoproteína/biossíntese , Receptor de Asialoglicoproteína/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Galactose/química , Galactose/farmacologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , RNA Interferente Pequeno/química , RNA Interferente Pequeno/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética
10.
Nanotechnology ; 29(27): 275704, 2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29664736

RESUMO

Photocurrent extraction and electron injection in CH3NH3PbBr3 (MAPbBr3) perovskite-based optoelectronic devices are both significantly increased by improving the contact at the PCBM/MAPbBr3 interface with an extended solvent annealing (ESA) process. Photoluminescence quenching and x-ray diffraction experiments show that the ESA not only improves the contact at the PCBM/MAPbBr3 interface but also increases the crystallinity of the MAPbBr3 thin films. The optimized dual-functional PCBM-MAPbBr3 heterojunction based optoelectronic device has a high power conversion efficiency of 4.08% and a bright visible luminescence of 1509 cd m-2. In addition, the modulation speed of the MAPbBr3 based light-emitting diodes is larger than 14 MHz, which indicates that the defect density in the MAPbBr3 thin film can be effectively reduced by using the ESA process.

11.
Opt Express ; 25(25): 32206-32213, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29245884

RESUMO

Zinc gallate (ZnGa2O4; ZGO) thin films were employed as the p-type transparent contact layer in deep-ultraviolet AlGaN-based light-emitting diodes (LEDs) to increase light output power. The transmittance of 200-nm-thick ZGO in deep-ultraviolet wavelength (280 nm) was as high as 92.3%. Two different ohmic contact structures, a dot-LED (D-LED; ZGO/dot-ITO/LED) and whole-LED (W-LED; ZGO/ITO/LED), exhibited improved light output power and current spreading compared to a conventional ITO-LED (C-LED). At an injection current of 20 mA, the D-LED and W-LED exhibited 33.7% and 12.3% enhancements in light output power, respectively, compared to the C-LED. The enhanced light output power of the D-LED can be attributed to an improvement in current spreading and enhanced light-extracting efficiency achieved by introducing ZGO/dot-ITO.

12.
Gynecol Oncol ; 143(1): 60-67, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27498588

RESUMO

OBJECTIVES: Synchronous endometrial and ovarian carcinomas (SEOCs) present gynecologic oncologists with a challenging diagnostic puzzle: discriminating between double primary cancers and single primary cancer with metastasis. We aimed to determine the clonal relationship between simultaneously diagnosed endometrial and ovarian carcinomas. METHODS: Fourteen pairs of SEOCs of endometrioid type and two pairs of SEOCs with disparate histologic types (control for dual primary tumors) were subjected to massively parallel sequencing (MPS) and molecular inversion probe microarrays. RESULTS: Thirteen of the 14 pairs of SEOCs harbored somatic mutations shared by both uterine and ovarian lesions, indicative of clonality. High degree of chromosomal instability in the tumors from 10 patients who received adjuvant chemotherapy, of whom 9 had synchronous carcinomas with significantly overlapping copy number alterations (CNAs), suggestive of single primary tumors with metastasis. The clonal relationship determined by genomic analyses did not agree with clinicopathological criteria in 11 of 14 cases. Minimal CNAs were identified in both ovarian and endometrial carcinomas in 4 patients, who did not receive adjuvant chemotherapy and experienced no recurrent diseases. In contrast, two of the 10 patients with chromosomally unstable cancers developed recurrent tumors. CONCLUSION: Our findings support a recent paradigm-shifting concept that most SEOCs originate from a single tumor. It also casts doubt on the clinicopathological criteria used to distinguish between dual primary tumors and single primary tumor with metastasis. Testing of CNAs on SEOCs may help determining the need of adjuvant therapy.


Assuntos
Carcinoma Endometrioide/genética , Variações do Número de Cópias de DNA , Neoplasias do Endométrio/genética , Neoplasias Primárias Múltiplas/genética , Neoplasias Ovarianas/genética , Adulto , Carcinoma Endometrioide/patologia , Neoplasias do Endométrio/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Mutação , Neoplasias Primárias Múltiplas/patologia , Neoplasias Ovarianas/patologia
13.
Opt Express ; 23(21): 28059-66, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26480463

RESUMO

The feasibility of using InGaN LEDs grown with asymmetric barrier layer (ABL) as transmitters in visible light communications is investigated experimentally. Compared with normal LEDs, the improvement in the spontaneous emission rate due to enhanced carrier localization and better uniformity of carrier distribution in ABL-containing MQWs leads to the fabricated LEDs can exhibit a 32.6% (@ 350 mA) increase in emission intensity and a 10.5% increase in modulation bandwidth. After eliminating the slow-responding phosphorescent components emitting from the phosphor-converted white LEDs, an open eye-diagram at 180 Mb/s is demonstrated over a distance of 100 cm in directed line-of-sight optical links. With the use of proposed LEDs, real-time transmissions of digital TV signals over a moderate distance (~100 cm) in free space is shown to be available in a 150 Mbit/s white LED-based optical link with conventional on-off keying modulation.

14.
J Mol Endocrinol ; 73(2)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722222

RESUMO

In this study, we investigate the effects of miRNA-138-5p and probable G-protein coupled receptor 124 (GPR124)-regulated inflammasome and downstream leukemia inhibitory factor (LIF)-STAT and adhesion molecule signaling in human decidual stromal cells. After informed consent was obtained from women aged 25-38 years undergoing surgical termination of the normal pregnancy and spontaneous miscarriage after 6-9 weeks of gestation, human decidual stromal cells were extracted from the decidual tissue. Extracellular vesicles (EVs) with microRNA (miRNA) between cells have been regarded as critical factors for embryo-maternal interactions on embryo implantation and programming of human pregnancy. MicroRNA-138-5p acts as the transcriptional regulator of GPR124 and the mediator of downstream inflammasome. LIF-regulated STAT activation and expression of integrins might influence embryo implantation. Hence, a better understanding of LIF-STAT and adhesion molecule signaling would elucidate the mechanism of microRNA-138-5p- and GPR124-regulated inflammasome activation on embryo implantation and pregnancy. Our results show that microRNA-138-5p, purified from the EVs of decidual stromal cells, inhibits the expression of GPR124 and the inflammasome, and activates the expression of LIF-STAT and adhesion molecules in human decidual stromal cells. Additionally, the knockdown of GPR124 and NLRP3 through siRNA increases the expression of LIF-STAT and adhesion molecules. The findings of this study help us gain a better understanding the role of EVs, microRNA-138-5p, GPR124, inflammasomes, LIF-STAT, and adhesion molecules in embryo implantation and programming of human pregnancy.


Assuntos
Decídua , Implantação do Embrião , Fator Inibidor de Leucemia , MicroRNAs , Transdução de Sinais , Células Estromais , Humanos , Feminino , Fator Inibidor de Leucemia/metabolismo , Gravidez , Decídua/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Adulto , Células Estromais/metabolismo , Inflamassomos/metabolismo , Fatores de Transcrição STAT/metabolismo , Vesículas Extracelulares/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
15.
J Endocr Soc ; 8(3): bvae001, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38264268

RESUMO

Kisspeptin (a product of the KISS1 gene and its receptor) plays an important role in obstetrics, gynecology, and cancer cell metastasis and behavior. In hypothalamic-pituitary-gonadal axis and placentation, Kisspeptin/Kisspeptin receptor affects hormone release and represses trophoblast invasion into maternal deciduae. Endometrial cancer is one of the common gynecological cancers and is usually accompanied by metastasis, the risk factor that causes death. Recently, research has demonstrated that Kisspeptin/Kisspeptin receptor expression in aggressive-stage endometrial cancer tissues. However, the detailed mechanism of Kisspeptin/Kisspeptin receptor in regulating the motility of endometrial cancers is not well understood. In this study, we use endometrial cancer cell lines RL95-2, Ishikawa, HEC-1-A, and HEC-1-B as models to explore the molecular mechanism of Kisspeptin on cell motility. First, we discovered that Kisspeptin/Kisspeptin receptor was expressed in endometrial cancer cells, and Kisspeptin significantly regulated the migration and invasion of endometrial cancer cells. Furthermore, we explored the epithelial-mesenchymal transition marker expression and the underlying signals were regulated on Kisspeptin treatment. In conclusion, we suggest that Kisspeptin regulates endometrial cancer cell motility via FAK and Src expression and the ERK1/2, N-Cadherin, E-Cadherin, beta-Catenin, Twist, and matrix metalloproteinase signaling pathways. We expect these molecules could be candidates for the development of new approaches and therapeutic targets.

16.
Anticancer Res ; 44(5): 1963-1971, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677769

RESUMO

BACKGROUND/AIM: Cancer cachexia is a wasting syndrome that has a devastating impact on the prognosis of patients with cancer. It is well-documented that pro-inflammatory cytokines are involved in the progression of this disorder. Therefore, this study was conducted to investigate the protective effect of taurine, an essential nonprotein amino acid with great anti-inflammatory properties, in attenuating muscle atrophy induced by cancer. MATERIALS AND METHODS: Conditioned media (CM) derived from T24 human bladder carcinoma cells with or without 5 mM taurine were incubated with human skeletal muscle cells (HSkMCs) and their differentiation was examined. The intracellular reactive oxygen species (ROS), morphology, and the catabolic pathway were monitored. RESULTS: T24-derived CM with high levels of TNF-α and IL-6 caused aberrant ROS accumulation and formation of atrophic myotubes by HSkMCs. In T24 cancer cells, taurine significantly inhibited the production of TNF-α and IL-6. In HSkMCs, taurine increased ROS clearance during differentiation and preserved the myotube differentiation ability impaired by the inflammatory tumor microenvironment. In addition, taurine ameliorated myotube atrophy by regulating the Akt/FoxO1/MuRF1 and MAFbx signaling pathways. CONCLUSION: Taurine rescues cancer-induced atrophy in human skeletal muscle cells by ameliorating the inflammatory tumor microenvironment. Taurine supplementation may be a promising approach for intervening with the progression of cancer cachexia.


Assuntos
Atrofia Muscular , Espécies Reativas de Oxigênio , Taurina , Microambiente Tumoral , Humanos , Taurina/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Atrofia Muscular/patologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Atrofia Muscular/etiologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Diferenciação Celular/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Caquexia/tratamento farmacológico , Caquexia/patologia , Caquexia/metabolismo , Caquexia/etiologia , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Meios de Cultivo Condicionados/farmacologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo
17.
Nanoscale Adv ; 6(3): 947-959, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38298598

RESUMO

Multivalent ligands hold promise for enhancing avidity and selectivity to simultaneously target multimeric proteins, as well as potentially modulating receptor signaling in pharmaceutical applications. Essential for these manipulations are nanosized scaffolds that precisely control ligand display patterns, which can be achieved by using polyproline oligo-helix macrocyclic nanoscaffolds via selective binding to protein oligomers and cell surface receptors. This work focuses on synthesis and structural characterization of different-sized polyproline tri-helix macrocyclic (PP3M) scaffolds. Through combined analysis of circular dichroism (CD), small- and wide-angle X-ray scattering (SWAXS), electron spin resonance (ESR) spectroscopy, and molecular modeling, a non-coplanar tri-helix loop structure with partially crossover helix ends is elucidated. This structural model aligns well with scanning tunneling microscopy (STM) imaging. The present work enhances the precision of nanoscale organic synthesis, offering prospects for controlled ligand positioning on scaffolds. This advancement paves the way for further applications in nanomedicine through selective protein interaction, manipulation of cell surface receptor functions, and developments of more complex polyproline-based nanostructures.

18.
Biomedicines ; 11(7)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37509623

RESUMO

Accurate identification of tissue types in surgical margins is essential for ensuring the complete removal of cancerous cells and minimizing the risk of recurrence. The objective of this study was to explore the clinical utility of Raman spectroscopy for the detection of oral squamous cell carcinoma (OSCC) in both tumor and healthy tissues obtained from surgical resection specimens during surgery. This study enrolled a total of 64 patients diagnosed with OSCC. Among the participants, approximately 50% of the cases were classified as the most advanced stage, referred to as T4. Raman experiments were conducted on cryopreserved tissue samples collected from patients diagnosed with OSCC. Prominent spectral regions containing key oral biomarkers were analyzed using the partial least squares-support vector machine (PLS-SVM) method, which is a powerful multivariate analysis technique for discriminant analysis. This approach effectively differentiated OSCC tissue from non-OSCC tissue, achieving a sensitivity of 95.7% and a specificity of 93.3% with 94.7% accuracy. In the current study, Raman analysis of fresh tissue samples showed that OSCC tissues contained significantly higher levels of nucleic acids, proteins, and several amino acids compared to the adjacent healthy tissues. In addition to differentiating between OSCC and non-OSCC tissues, we have also explored the potential of Raman spectroscopy in classifying different stages of OSCC. Specifically, we have investigated the classification of T1, T2, T3, and T4 stages based on their Raman spectra. These findings emphasize the importance of considering both stage and subsite factors in the application of Raman spectroscopy for OSCC analysis. Future work will focus on expanding our tissue sample collection to better comprehend how different subsites influence the Raman spectra of OSCC at various stages, aiming to improve diagnostic accuracy and aid in identifying tumor-free margins during surgical interventions.

19.
Autophagy ; 19(12): 3151-3168, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37505094

RESUMO

ABBREVIATIONS: AMPK: AMP-activated protein kinase; CHX: cycloheximide; RAD001: everolimus; HBSS: Hanks' balanced salt solution; LC-MS/MS: liquid chromatography-mass spectrometry/mass spectrometry; MMP14: matrix metallopeptidase 14; MTOR: mechanistic target of rapamycin kinase; MAPK: mitogen-activated protein kinase; RB1CC1/FIP200: RB1 inducible coiled-coil 1; PtdIns3P: phosphatidylinositol-3-phosphate; PX: phox homology; SH3: Src homology 3; SH3PXD2A/TKS5: SH3 and PX domains 2A; SH3PXD2A-[6A]: S112A S142A S146A S147A S175A S348A mutant; ULK1: unc-51 like autophagy activating kinase 1.


Assuntos
Autofagia , Neoplasias Ovarianas , Humanos , Feminino , Cromatografia Líquida , Metaloproteinase 14 da Matriz , Espectrometria de Massas em Tandem , Proteínas Quinases Ativadas por AMP/metabolismo , Movimento Celular , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular
20.
Cancer Med ; 12(18): 19174-19187, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37706329

RESUMO

INTRODUCTION: In the era of precision preventive medicine, susceptible genetic markers for oro-/hypopharyngeal squamous cell carcinoma (OPSCC) have been investigated for genome-wide associations. MATERIALS AND METHODS: A case-control study including 659 male head and neck squamous cell carcinoma (HNSCC) patients, including 331 oropharyngeal cancer, treated between March 1996 and December 2016 and 2400 normal controls was performed. A single-nucleotide polymorphism (SNP) array was used to determine genetic loci that increase susceptibility to OPSCC. RESULTS: We analyzed the allele frequencies of 664,994 autosomal SNPs in 659 HNSCC cases; 7 SNPs scattered in loci of chromosomes 5, 7, 9, 11, and 19 were significant in genome-wide association analysis (Pc < 1.0669 × 10-7 ). In OPSCCs (n = 331), two clustered regions in chromosomes 4 and 6 were significantly different from the controls. We successfully identified a missense alteration of the SNP region in alcohol dehydrogenase 1B (ADH1B) (https://genome.ucsc.edu; hg38); the top correlated locus was rs1229984 (p = 1 × 10-11 ). Adjusted for environmental exposure, including smoking, alcohol, and areca quid, a region in chromosome 12, related to alcohol metabolism, was found to independently increase the susceptibility to OPSCC. The ADH1B rs1229984 AA genotype had better overall survival compared to the AG and GG genotypes (p = 0.042) in OPSCC. The GG genotype in rs1229984 was significantly associated with a younger age of onset than other genotypes (p = 0.001 and <0.001, respectively) in OPSCC patients who consumed alcohol. CONCLUSION: ADH1B was an important genetic locus that significantly correlated with the development of OPSCCs and patient survival.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA