Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 42(23): 4917-4920, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29216144

RESUMO

Terahertz (THz) polarizers with robust structure and high transmittance are demonstrated using 3D-integrated circuit (IC) technologies. A Cu wire-grid polarizer is sealed and well protected by Si-bonded wafers through a low-temperature eutectic bonding method. Deep reactive-ion etching is used to fabricate the anti-reflection (AR) layers on outward surfaces of bonded wafers. The extinction ratio and transmittance of polarizers are between 20 dB and 33 dB, and 13 dB and 27 dB for 10 µm and 20 µm pitch wire-grids, respectively, and 100% at central frequency, depending on frequency and AR layer thickness. The process of polarizer fabrication is simple from mature semiconductor manufacturing techniques that lead to high yield, low cost, and potential for THz applications.

2.
Sci Rep ; 6: 35467, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27739504

RESUMO

The majority of the proposed graphene-based THz devices consist of a metamaterial that can optically interact with graphene. This coupled graphene-metamaterial system gives rise to a family of resonant modes such as the surface plasmon polariton (SPP) modes of graphene, the geometrically induced SPPs, also known as the spoof SPP modes, and the Fabry-Perot (FP) modes. In the literature, these modes are usually considered separately as if each could only exist in one structure. By contrast, in this paper, we show that even in a simple metamaterial structure such as a one-dimensional (1D) metallic slit grating, these modes all exist and can potentially interact with each other. A graphene SPP-based THz device is also fabricated and measured. Despite the high scattering rate, the effective SPP resonances can still be observed and show a consistent trend between the effective frequency and the grating period, as predicted by the theory. We also find that the excitation of the graphene SPP mode is most efficient in the terahertz spectral region due to the Drude conductivity of graphene in this spectral region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA