RESUMO
Postherpetic neuralgia (PHN) is a notorious neuropathic pain featuring persistent profound mechanical hyperalgesia with significant negative impact on patients' life quality. CDDO can regulate inflammatory response and programmed cell death. Its derivative also protects neurons from damages by modulating microglia activities. As a consequence of central and peripheral sensitization, applying neural blocks may benefit to minimize the risk of PHN. This study aimed to explore whether CDDO could generate analgesic action in a PHN-rats' model. The behavioural test was determined by calibrated forceps testing. The number of apoptotic neurons and degree of glial cell reaction were assessed by immunofluorescence assay. Activation of PKC-δ and the phosphorylation of Akt were measured by western blots. CDDO improved PHN by decreasing TRPV1-positive nociceptive neurons, the apoptotic neurons, and reversed glial cell reaction in adult rats. It also suppressed the enhanced PKC-δ and p-Akt signalling in the sciatic nerve, dorsal root ganglia (DRG) and spinal dorsal horn. Our research is the promising report demonstrating the analgesic and neuroprotective action of CDDO in a PHN-rat's model by regulating central and peripheral sensitization targeting TRPV1, PKC-δ and p-Akt. It also is the first study to elucidate the role of oligodendrocyte in PHN.
Assuntos
Neuralgia Pós-Herpética , Neuralgia , Ácido Oleanólico/análogos & derivados , Humanos , Adulto , Ratos , Animais , Neuralgia Pós-Herpética/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neuralgia/metabolismo , Analgésicos , Gânglios Espinais/metabolismo , Canais de Cátion TRPV/metabolismoRESUMO
Subarachnoid hemorrhage (SAH) is a type of stroke caused by bleeding into the subarachnoid space. SAH is a medical emergency and requires prompt treatment to prevent complications such as seizures, stroke, or other brain damage. Treatment options may include surgery, medication, or a combination of both. 2-Cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO), a compound with anti-inflammatory and antioxidant properties, is currently being investigated as a potential treatment for various diseases, including chronic kidney disease and pulmonary arterial hypertension. In this study, the effects of CDDO on rats subjected to SAH were evaluated. Male Sprague-Dawley rats were divided into four groups (n = 6/group): (1) control group, (2) SAH group, (3) SAH + low-dose CDDO (10 mg/kg injected into the subarachnoid space at 24 h after SAH) group, and (4) SAH + high-dose CDDO (20 mg/kg) group. CDDO improved SAH-induced poor neurological outcomes and reduced vasospasm in the basal artery following SAH. It also decreased the SAH-induced expression of proinflammatory cytokines such as TNF-α, IL-1ß, and IL-6 in both the cerebrospinal fluid and serum samples as determined by ELISA. A Western blot analysis confirmed an increase in the p-NF-κB protein level after SAH, but it was significantly decreased with CDDO intervention. Immunofluorescence staining highlighted the proliferation of microglia and astrocytes as well as apoptosis of the neuronal cells after SAH, and treatment with CDDO markedly reduced the proliferation of these glial cells and apoptosis of the neuronal cells. The early administration of CDDO after SAH may effectively mitigate neuronal apoptosis and vasospasm by suppressing inflammation.
RESUMO
Intracerebral hemorrhage (ICH) is a severe condition characterized by bleeding within brain tissue. Primary brain injury in ICH results from a mechanical insult caused by blood accumulation, whereas secondary injury involves inflammation, oxidative stress, and disruption of brain physiology. miR-195-5p may participate in ICH pathology by regulating cell proliferation, oxidative stress, and inflammation. Therefore, we assessed the performance of miR-195-5p in alleviating ICH-induced secondary brain injury. ICH was established in male Sprague-Dawley rats (7 weeks old, 200-250 g) via the stereotaxic intrastriatal injection of type IV bacterial collagenase, after which miR-195-5p was administered intravenously. Neurological function was assessed using corner turn and forelimb grip strength tests. Protein expression was assessed by western blotting and ELISA. The miR-195-5p treatment significantly improved neurological function; modulated macrophage polarization by promoting anti-inflammatory marker (CD206 and Arg1) production and inhibiting pro-inflammatory marker (CD68 and iNOS) production; enhanced Akt signalling, reduced oxidative stress by increasing Sirt1 and Nrf2 levels, and attenuated inflammation by decreasing NF-κB activation; inhibited apoptosis via increased Bcl-2 and decreased cleaved caspase-3 levels; and regulated synaptic plasticity by modulating NMDAR2A, NMDAR2B, BDNF, and TrkB expression and ERK and CREB phosphorylation. In conclusion, miR-195-5p exerts neuroprotective effects in ICH by reducing inflammation and oxidative stress, inhibiting apoptosis, and restoring synaptic plasticity, ultimately restoring behavioral recovery, and represents a promising therapeutic agent that warrants clinical studies.
Assuntos
Apoptose , Hemorragia Cerebral , MicroRNAs , Neurônios , Estresse Oxidativo , Ratos Sprague-Dawley , Animais , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Masculino , Ratos , Neurônios/metabolismo , Neurônios/patologia , Inflamação/metabolismo , Inflamação/patologia , Transdução de Sinais , Modelos Animais de DoençasRESUMO
Numerous studies have considered galectin-3 or Glycogen synthase kinase 3 beta (GSK3B) as a potential prognosis marker for various cancers. However, the correlation between the protein expression of galectin-3/GSK3B and the clinical parameters of astrocytoma has not been reported. This study aims to validate the correlation between the clinical outcomes and protein expression of galectin-3/GSK3B in astrocytoma. Immunohistochemistry staining was performed to detect galectin-3/GSK3B protein expression in patients with astrocytoma. The Chi-square test, Kaplan-Meier evaluation, and Cox regression analysis were used to determine the correlation between clinical parameters and galectin-3/GSK3B expression. Cell proliferation, invasion, and migration were compared between a non-siRNA group and a galectin-3/GSK3B siRNA group. Protein expression in galectin-3 or GSK3B siRNA-treated cells was evaluated using western blotting. Galectin-3 and GSK3B protein expression were significantly positively correlated with the World Health Organization (WHO) astrocytoma grade and overall survival time. Multivariate analysis revealed that WHO grade, galectin-3 expression, and GSK3B expression were independent prognostic factors for astrocytoma. Galectin-3 or GSK3B downregulation induced apoptosis and decreased cell numbers, migration, and invasion. siRNA-mediated gene silencing of galectin-3 resulted in the downregulation of Ki-67, cyclin D1, VEGF, GSK3B, p-GSK3B Ser9 (p-GSK3B S9), and ß-catenin. In contrast, GSK3B knockdown only decreased Ki-67, VEGF, p-GSK3B S9, and ß-catenin protein expression but did not affect cyclin D1 and galectin-3 protein expression. The siRNA results indicated that GSK3B is downstream of the galectin-3 gene. These data support that galectin-3 mediated tumor progression by upregulating GSK3B and ß-catenin protein expression in glioblastoma. Therefore, galectin-3 and GSK3B are potential prognostic markers, and their genes may be considered to be anticancer targets for astrocytoma therapy.
RESUMO
Glioblastoma multiforme (GBM) is the most common and deadliest primary brain tumor in adults. Despite the advances in GBM treatment, outcomes remain poor, with a 2-year survival rate of less than 5%. Hyperbaric oxygen (HBO) therapy is an intermittent, high-concentration, short-term oxygen therapy used to increase cellular oxygen content. In this study, we evaluated the effects of HBO therapy, alone or combined with other treatment modalities, on GBM in vitro and in vivo. In the in vitro analysis, we used a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to assess the effects of HBO therapy alone, a colony formation assay to analyze the effects of HBO therapy combined with radiotherapy and with temozolomide (TMZ), and a neurosphere assay to assess GBM stemness. In the in vivo analysis, we used immunohistochemical staining and in vivo bioluminescence imaging to assess GBM stemness and the therapeutic effect of HBO therapy alone or combined with TMZ or radiotherapy, respectively. HBO therapy did not affect GBM cell viability, but it did reduce the analyzed tumors' ability to form cancer stem cells. In addition, HBO therapy increased GBM sensitivity to TMZ and radiotherapy both in vitro and in vivo. HBO therapy did not enhance tumor growth and exhibited adjuvant effects to chemotherapy and radiotherapy through inhibiting GBM stemness. In conclusion, HBO therapy shows promise as an adjuvant treatment for GBM by reducing cancer stem cell formation and enhancing sensitivity to chemotherapy and radiotherapy.
RESUMO
Glioblastoma (GBM) is the most common primary brain malignancy in adults. Despite multimodal treatment that involves maximal safe resection, concurrent chemoradiotherapy, and tumour treatment for supratentorial lesions, the prognosis remains poor. The current median overall survival is only <2 years, and the 5-year survival is only 7.2%. Thioredoxin domain-containing protein 11 (TXNDC11), also known as EF-hand binding protein 1, was reported as an endoplasmic reticulum stress-induced protein. The present study aimed to elucidate the prognostic role of TXNDC11 in GBM. We evaluated the clinical parameters and TXNDC11 scores in gliomas from hospitals. Additionally, proliferation, invasion, migration assays, apoptosis, and temozolomide (TMZ)-sensitivity assays of GBM cells were conducted to evaluate the effects of short interfering RNA (siRNA) on these processes. In addition, these cells were subjected to Western blotting to detect the expression levels of N-cadherin, E-cadherin, and Cyclin D1. High levels of TXNDC11 protein expression were significantly associated with World Health Organization (WHO) high-grade tumour classification and poor prognosis. Multivariate analysis revealed that in addition to the WHO grade, TXNDC11 protein expression was also an independent prognostic factor of glioma. In addition, TXNDC11 silencing inhibited proliferation, migration, and invasion and led to apoptosis of GBM cells. However, over-expression of TXNDC11 enhanced proliferation, migration, and invasion. Further, TXNDC11 knockdown downregulated N-cadherin and cyclin D1 expression and upregulated E-cadherin expression in GBM cells. Knock-in TXNDC11 return these. Finally, in vivo, orthotopic xenotransplantation of TXNDC11-silenced GBM cells into nude rats promoted slower tumour growth and prolonged survival time. TXNDC11 is a potential oncogene in GBMs and may be an emerging therapeutic target.
Assuntos
Glioblastoma , Glioma , Animais , Ratos , Caderinas , Ciclina D1 , Glioma/genética , Tiorredoxinas/genética , HumanosRESUMO
Although the expression of p53 and epidermal growth factor receptor (EGFR) is associated with therapeutic resistance and patient outcomes in many malignancies, the relationship in astrocytomas is unclear. This study aims to correlate p53 and EGFR expression in brain astrocytomas with overall patient survival. Eighty-two patients with astrocytomas were enrolled in the study. Semi-quantitative p53 and EGFR immunohistochemical staining was measured in tumor specimens. The mean follow-up after astrocytoma surgery was 18.46 months. The overall survival rate was 83%. Survival was reduced in EGFR-positive patients compared with survival in EGFR-negative patients (p < 0.05). However, no significant differences in survival were detected between patients with high and low p53 expression. In patients with low p53 expression, positive EGFR staining was associated with significantly worse survival compared with patients with negative EGFR staining (log-rank test: p < 0.001). Survival rates in positive and negative EGFR groups with high p53 protein expression were similar (log-rank test: p = 0.919). The IC50 of an EGFR inhibitor was higher in GBM cells with high p53 protein expression compared with the IC50 in cells with low p53 expression. Combined EGFR and p53 expression may have prognostic significance in astrocytomas.
RESUMO
Chronic inflammation and cancer stem cells are known risk factors for tumorigenesis. The aetiology of hepatocellular carcinoma (HCC) involves a multistep pathological process that is characterised by chronic inflammation and hepatocyte damage, but the correlation between HCC, inflammation and cancer stem cells remains unclear. In this study, we examined the role of hepatic progenitor cells in a mouse model of chemical-induced hepatocarcinogenesis to elucidate the relationship between inflammation, malignant transformation and cancer stem cells. We used diethylnitrosamine (DEN) to induce liver tumour and scored for H&E and reticulin staining. We also scored for immunohistochemistry staining for OV-6 expression and analysed the statistical correlation between them. DEN progressively induced inflammation at week 7 (40%, 2/5); week 27 (75%, 6/8); week 33 (62.5%, 5/8); and week 50 (100%, 12/12). DEN progressively induced malignant transformation at week 7 (0%, 0/5); week 27 (87.5%, 7/8); week 33 (100%, 8/8); and week 50 (100%, 12/12). The obtained data showed that DEN progressively induced high-levels of OV-6 expression at week 7 (20%, 1/5); week 27 (37.5%, 3/8); week 33 (50%, 4/8); and week 50 (100%, 12/12). DEN-induced inflammation, malignant transformation and high-level OV-6 expression in hamster liver, as shown above, as well as applying Spearman's correlation to the data showed that the expression of OV-6 was significantly correlated to inflammation (p = 0.001) and malignant transformation (p < 0.001). There was a significant correlation between the number of cancer stem cells, inflammation and malignant transformation in a DEN-induced model of hepatic carcinogenesis in the hamster.
RESUMO
Neuropathic pain is a debilitating chronic disorder, significantly causing personal and social burdens, in which activated neuroinflammation is one major contributor. Thymic stromal lymphopoietin (TSLP) and interleukin (IL)-33 is important for chronic inflammation. Linalyl acetate (LA) is main component of lavender oil with an anti-inflammatory property through TSLP signaling. The aim of the study is to investigate how LA regulates mechanical hyperalgesia after sciatic nerve injury (SNI). Adult Sprague-Dawley male rats were separated into 3 groups: control group, SNI group and SNI with LA group. LA was administrated intraperitoneally one day before SNI. Pain behavior test was evaluated through calibration forceps testing. Ipsilateral sciatic nerves (SNs), dorsal root ganglions (DRGs) and spinal cord were collected for immunofluorescence staining and Western blotting analyses. SNI rats were more sensitive to hyperalgesia response to mechanical stimulus since operation, which was accompanied by spinal cord glial cells reactions and DRG neuro-glial interaction. LA could relieve the pain sensation, proinflammatory cytokines and decrease the expression of TSLP/TSLPR complex. Also, LA could reduce inflammation through reducing IL-33 signaling. This study is the first to indicate that LA can modulate pain through TSLP/TSLPR and IL-33 signaling after nerve injury.
Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Masculino , Ratos , Animais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Interleucina-33 , Ratos Sprague-Dawley , Citocinas/metabolismo , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Neuropatia Ciática/complicações , Inflamação/tratamento farmacológico , Inflamação/complicações , Linfopoietina do Estroma do TimoRESUMO
Peripheral nerve injury involves divergent alterations within dorsal root ganglia (DRG) neurons sensitized by persistent inflammation. Thymic stromal lymphopoietin (TSLP) production is crucial in the development of chronic inflammatory responses. Herein, we investigate the changes of TSLP expression in rats' DRG neurons between injured and uninjured sides in the same rat. Linalyl acetate (LA) was served as a TSLP inhibitor and given intraperitoneally. Rats were assigned to be group of chronic constriction injury (CCI) of the sciatic nerve and the group of CCI of the sciatic nerve administrated with LA. Over 14 days, the rats were measured for paw withdrawal thresholds. DRGs were collected to assess morphological changes via immunofluorescence study. After receiving CCI, the rats rapidly developed mechanical hyperalgesia. TSLP expression at DRG, on the ipsilateral injured side, was consistent with changes in pain behaviors. TSLP appeared in nerve fibers with both small diameters and large diameters. Additionally, TSLP was expressed mostly in transient receptor potential vanilloid-1 (TRPV1)-positive nociceptive neurons. Administration with LA can attenuate the pain behaviors and expression of TSLP in DRG neurons, and in apoptotic neurons at the injured side, but not in the contra-lateral uninjured side. Overall, these results imply that altered expressions of TSLP in nociceptive DRG neurons contributed to mechanical hyperalgesia in a CCI rat model.
Assuntos
Citocinas/metabolismo , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Neurônios/metabolismo , Animais , Lesões por Esmagamento/metabolismo , Masculino , Fibras Nervosas/metabolismo , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/metabolismo , Neuropatia Ciática/metabolismo , Linfopoietina do Estroma do TimoRESUMO
M1 microglia induce neuroinflammation-related neuronal death in animal models of spontaneous subarachnoid haemorrhage. Zileuton is a 5-lipoxygenase inhibitor that reduces the levels of downstream pro-inflammatory cytokines. This study aimed to investigate whether zileuton inhibits microglial activation and describe its underlying mechanisms. BV-2 cells were exposed to 1 mg/mL haemolysate for 30 min, followed by treatment with different concentrations (5, 10, 15, or 20 µM) of zileuton for 24 h. The cells were then assessed for viability, polarisation, and protein expression levels. Haemolysate increases the viability of BV-2 cells and induces M1 polarisation. Subsequent exposure to high concentrations of zileuton decreased the viability of BV-2 cells, shifted the polarisation to the M2 phenotype, suppressed the expression of 5-lipoxygenase, decreased tumour necrosis factor α levels, and increased interleukin-10 levels. Furthermore, high concentrations of zileuton suppressed the expression of myeloid differentiation primary response protein 88 and reduced the phosphorylated-nuclear factor-kappa B (NF-kB)/NF-kB ratio. Therefore, phenotype reversal from M1 to M2 is a possible mechanism by which zileuton attenuates haemolysate-induced neuroinflammation after spontaneous subarachnoid haemorrhage.
Assuntos
NF-kappa B , Hemorragia Subaracnóidea , Animais , Hidroxiureia/análogos & derivados , Lipopolissacarídeos/metabolismo , Inibidores de Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/farmacologia , Microglia/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Hemorragia Subaracnóidea/metabolismoRESUMO
Colorectal cancer (CRC) is one of the most common gastrointestinal cancers worldwide. Current therapeutic strategies mainly involve surgery and chemoradiotherapy; however, novel antitumor compounds are needed to avoid drug resistance in CRC, as well as the severe side effects of current treatments. In this study, we investigated the anticancer effects and underlying mechanisms of Arylquin 1 in CRC. The MTT assay was used to detect the viability of SW620 and HCT116 cancer cells treated with Arylquin 1 in a dose-dependent manner in vitro. Further, wound-healing and transwell migration assays were used to evaluate the migration and invasion abilities of cultured cells, and Annexin V was used to detect apoptotic cells. Additionally, Western blot was used to identify the expression levels of N-cadherin, caspase-3, cyclin D1, p-extracellular signal-regulated kinase (ERK), p-c-JUN N-terminal kinase (JNK), and phospho-p38, related to key signaling proteins, after administration of Arylquin 1. Xenograft experiments further confirmed the effects of Arylquin 1 on CRC cells in vivo. Arylquin 1 exhibited a dose-dependent reduction in cell viability in cultured CRC cells. It also inhibited cell proliferation, migration, and invasion, and induced apoptosis. Mechanistic analysis demonstrated that Arylquin 1 increased phosphorylation levels of ERK, JNK, and p38. In a mouse xenograft model, Arylquin 1 treatment diminished the growth of colon tumors after injection of cultured cancer cells. Arylquin 1 may have potential anticancer effects and translational significance in the treatment of CRC.
Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Aminoquinolinas , Animais , Apoptose , Movimento Celular , Neoplasias do Colo/tratamento farmacológico , Neoplasias Colorretais/patologia , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Secretagogos/farmacologiaRESUMO
Background: Neurological deficits following subarachnoid hemorrhage (SAH) are caused by early or delayed brain injuries. Our previous studies have demonstrated that hyperglycemia induces profound neuronal apoptosis of the cerebral cortex. Morphologically, we found that hyperglycemia exacerbated late vasospasm following SAH. Thus, our previous studies strongly suggest that post-SAH hyperglycemia is not only a response to primary insult, but also an aggravating factor for brain injuries. In addition, mitochondrial fusion and fission are vital to maintaining cellular functions. Current evidence also shows that the suppression of mitochondrial fission alleviates brain injuries after experimental SAH. Hence, this study aimed to determine the effects of mitochondrial dynamic modulation in hyperglycemia-related worse SAH neurological prognosis. Materials and methods: In vitro, we employed an enzyme-linked immunosorbent assay (ELISA) to detect the effect of mitochondrial division inhibitor-1 (Mdivi-1) on lipopolysaccharide (LPS)-induced BV-2 cells releasing inflammatory factors. In vivo, we produced hyperglycemic rats via intraperitoneal streptozotocin (STZ) injections. Hyperglycemia was confirmed using blood-glucose measurements (>300 mg/dL) 7 days after the STZ injection. The rodent model of SAH, in which fresh blood was instilled into the craniocervical junction, was used 7 days after STZ administration. We investigated the mechanism and effect of Mdivi-1, a selective inhibitor of dynamin-related protein (Drp1) to downregulate mitochondrial fission, on SAH-induced apoptosis in a hyperglycemic state, and evaluated the results in a dose−response manner. The rats were divided into the following five groups: (1) control, (2) SAH only, (3) Diabetes mellitus (DM) + SAH, (4) Mdivi-1 (0.24 mg/kg) + DM + SAH, and (5) Mdivi-1 (1.2 mg/kg) + DM + SAH. Results: In vitro, ELISA revealed that Mdivi-1 inhibited microglia from releasing inflammatory factors, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, and IL-6. In vivo, neurological outcomes in the high-dose (1.2 mg/kg) Mdivi-1 treatment group were significantly reduced compared with the SAH and DM + SAH groups. Furthermore, immunofluorescence staining and ELISA revealed that a high dose of Mdivi-1 had attenuated inflammation and neuron cell apoptosis by inhibiting Hyperglycemia-aggravated activation, as well as microglia and astrocyte proliferation, following SAH. Conclusion: Mdivi-1, a Drp-1 inhibitor, attenuates cerebral vasospasm, poor neurological outcomes, inflammation, and neuron cell apoptosis following SAH + hyperglycemia.
Assuntos
Lesões Encefálicas , Hiperglicemia , Hemorragia Subaracnóidea , Animais , Apoptose , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Hiperglicemia/complicações , Hiperglicemia/tratamento farmacológico , Inflamação/patologia , Dinâmica Mitocondrial , Ratos , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/metabolismoRESUMO
BACKGROUND: Osteoporosis and stroke are major health problems that have potentially overlapping pathophysiological mechanisms. The aim of this study was to estimate osteoporosis risk in Taiwan patientswho had a stroke. METHOD: This study retrieved data contained in the Taiwan National Health Insurance Research Database for a population-based sample of consecutive patients either hospitalised for stroke or treated for stroke on an outpatient basis. A total of 7550 newly diagnosed patientswho had a stroke were enrolled during 1996-2010. Osteoporosis risk in these patients was then compared with a matched group of patients who had not had a stroke randomly selected from the database at a ratio of 1:4 (n=30 200). The relationship between stroke history and osteoporosis risk was estimated with Cox proportional hazard regression models. RESULTS: During the follow-up period, osteoporosis developed in 1537 patients who had a stroke and in 5830 patients who had not had a stroke. The incidence of osteoporosis for cohorts with and without stroke was 32.97 and 14.28 per 1000 person-years, respectively. After controlling for covariates, the overall risk of osteoporosis was 1.82-fold higher in the stroke group than in the non-stroke group. The relative osteoporosis risk contributed by stroke had apparently greater impact among male gender and younger age groups. CONCLUSION: History of stroke is a risk factor for osteoporosis in Taiwan. Much attention to stroke-targeted treatment modalities might minimise adverse outcomes of osteoporosis.
Assuntos
Osteoporose/epidemiologia , Medição de Risco , Acidente Vascular Cerebral/epidemiologia , Fatores Etários , Idoso , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Fatores Sexuais , Taiwan/epidemiologiaRESUMO
Resiniferatoxin is an ultrapotent capsaicin analog that mediates nociceptive processing; treatment with resiniferatoxin can cause an inflammatory response and, ultimately, neuropathic pain. Hepatoma-derived growth factor, a growth factor related to normal development, is associated with neurotransmitters surrounding neurons and glial cells. Therefore, the study aims to investigate how blocking hepatoma-derived growth factor affects the inflammatory response in neuropathic pain. Serum hepatoma-derived growth factor protein expression was measured via ELISA. Resiniferatoxin was administrated intraperitoneally to induce neuropathic pain in 36 male Sprague-Dawley rats which were divided into three groups (resiniferatoxin+recombinant hepatoma-derived growth factor antibody group, resiniferatoxin group, and control group) (n = 12/group). The mechanical threshold response was tested with calibration forceps. Cell apoptosis was measured by TUNEL assay. Immunofluorescence staining was performed to detect apoptosis of neuron cells and proliferation of astrocytes in the spinal cord dorsal horn. RT-PCR technique and western blot were used to measure detect inflammatory factors and protein expressions. Serum hepatoma-derived growth factor protein expression was higher in the patients with sciatica compared to controls. In resiniferatoxin-group rats, protein expression of hepatoma-derived growth factor was higher than controls. Blocking hepatoma-derived growth factor improved the mechanical threshold response in rats. In dorsal root ganglion, blocking hepatoma-derived growth factor inhibited inflammatory cytokines. In the spinal cord dorsal horn, blocking hepatoma-derived growth factor inhibited proliferation of astrocyte, apoptosis of neuron cells, and attenuated expressions of pain-associated proteins. The experiment showed that blocking hepatoma-derived growth factor can prevent neuropathic pain and may be a useful alternative to conventional analgesics.
Assuntos
Astrócitos/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/prevenção & controle , Animais , Astrócitos/metabolismo , Capsaicina/farmacologia , Diterpenos/farmacologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Masculino , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismoRESUMO
Triple negative breast cancer (TNBC) displays higher risk of recurrence and distant metastasis. Due to absence of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2), TNBC lacks clinically established targeted therapies. Therefore, understanding of the mechanism underlying the aggressive behaviors of TNBC is required for the design of individualized strategies and the elongation of overall survival duration. Here, we supported a positive correlation between ß1 integrin and malignant behaviors such as cell migration, invasion, and drug resistance. We found that silencing of ß1 integrin inhibited cell migration, invasion, and increased the sensitivity to anti-cancer drug. In contrast, activation of ß1 integrin increased cell migration, invasion, and decreased the sensitivity to anti-cancer drug. Furthermore, we found that silencing of ß1 integrin abolished Focal adhesion kinese (FAK) mediated cell survival. Overexpression of FAK could restore cisplatin-induced apoptosis in ß1 integrin-depleted cells. Consistent to in vitro data, ß1 integrin expression was also positively correlated with FAK (p = 0.031) in clinical tissue. More importantly, ß1 integrin expression was significantly correlated with patient outcome. In summary, our study indicated that ß1 integrin could regulate TNBC cells migration, invasion, drug sensitivity, and be a potential prognostic biomarker in TNBC patient survival.
Assuntos
Biomarcadores Tumorais/metabolismo , Integrina beta1/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Feminino , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Integrina beta1/genética , Neoplasias de Mama Triplo Negativas/patologiaRESUMO
It is believed that endometrial miRNAs contribute to the aetiology of endometriosis in stem cells; however, the mechanisms remain unclear. Here we collected serum samples from patients with or without endometriosis and characterized the miRNA expression profiles of these two groups. MicroRNA-199a-5p (miR-199a-5p) was dramatically down-regulated in patients with endometriosis compared with control patients. In addition, we found that the tumour suppressor gene, SMAD4, could elevate miR-199a-5p expression in ectopic endometrial mesenchymal stem cells. Up-regulation of miR-199a-5p suppressed cell proliferation, motility and angiogenesis of these ectopic stem cells by targeting the 3' untranslated region of VEGFA. Furthermore, we established an animal model of endometriosis and found that miR-199a-5p could decrease the size of endometriotic lesions in vivo. Taken together, this newly identified miR-199a-5p module provides a new avenue to the understanding of the processes of endometriosis development, especially proliferation, motility and angiogenesis, and may facilitate the development of potential therapeutics against endometriosis.
Assuntos
Endometriose/genética , Endométrio/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto , Animais , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Endometriose/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , MicroRNAs/metabolismo , Fator A de Crescimento do Endotélio Vascular/genéticaRESUMO
BACKGROUND: Glioblastoma multiforme (GBM) is among the most aggressive and challenging brain tumors, with limited treatment options. Cimicifuga foetida, a traditional Chinese medicine, has shown promise due to its bioactive components. This study investigates the anti-glioma effects of a methanolic extract of C. foetida (CF-ME) in GBM cell lines. METHODS: The effects of CF-ME and its index compounds (caffeic acid, cimifugin, ferulic acid, and isoferulic acid) on GBM cell viability were assessed using MTT assays on U87 MG, A172, and T98G cell lines. The ability of CF-ME to induce cell cycle arrest, apoptosis, and autophagy and inhibit metastasis was evaluated using flow cytometry, Western blotting, and functional assays. Additionally, the synergistic potential of CF-ME with temozolomide (TMZ) was explored. RESULTS: CF-ME significantly reduced GBM cell viability in a dose- and time-dependent manner, induced G1 phase cell cycle arrest, promoted apoptosis via caspase activation, and triggered autophagy. CF-ME also inhibited GBM cell invasion, migration, and adhesion, likely by modulating epithelial-mesenchymal transition (EMT) markers. Combined with TMZ, CF-ME further enhanced reduced GBM cell viability, suggesting a potential synergistic effect. However, the individual index compounds of CF-ME exhibited only modest inhibitory effects, indicating that the full anti-glioma activity may result from the synergistic interactions among its components. CONCLUSIONS: CF-ME exhibited potent anti-glioma activity through multiple mechanisms, including cell cycle arrest, apoptosis, autophagy, and the inhibition of metastasis. Combining CF-ME with TMZ further enhanced its therapeutic potential, making it a promising candidate for adjuvant therapy in glioblastoma treatment.
Assuntos
Apoptose , Neoplasias Encefálicas , Cimicifuga , Pontos de Checagem da Fase G1 do Ciclo Celular , Glioma , Extratos Vegetais , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Extratos Vegetais/farmacologia , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Cimicifuga/química , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Glioma/tratamento farmacológico , Glioma/patologia , Metanol/química , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Sobrevivência Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Temozolomida/farmacologia , Autofagia/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Metástase Neoplásica , Proliferação de Células/efeitos dos fármacosRESUMO
Neuropathic pain following nerve injury is a complex condition, which often puts a negative impact on life and remains a sustained problem. To make pain management better is of great significance and unmet need. RTA 408 (Omaveloxone) is a traditional Asian medicine with a valid anti-inflammatory property. Thus, we aim to investigate the therapeutic effect of RTA-408 on mechanical allodynia in chronic constriction injury (CCI) rats as well as the underlying mechanisms. Neuropathic pain was induced by using CCI of the rats' sciatic nerve (SN) and the behavior testing was measured by calibrated forceps testing. Activation of Nrf-2, the phosphorylation of nuclear factor-κB (NF-κB), and the inflammatory response were assessed by western blots. The number of apoptotic neurons and degree of glial cell reaction were examined by immunofluorescence assay. RTA-408 exerts an analgesic effect on CCI rats. RTA-408 reduces neuronal apoptosis and glial cell activation by increasing Nrf-2 expression and decreasing the inflammatory response (TNF-α/ p-NF-κB/ TSLP/ STAT5). These data suggest that RTA-408 is a candidate with potential to reduce nociceptive hypersensitivity after CCI by targeting TSLP/STAT5 signaling.
Assuntos
NF-kappa B , Neuralgia , Triterpenos , Ratos , Animais , NF-kappa B/metabolismo , Constrição , Fator de Transcrição STAT5/metabolismo , Nociceptividade , Ratos Sprague-Dawley , Neuralgia/complicações , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Nervo Isquiático/metabolismo , Hiperalgesia/complicações , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismoRESUMO
Chronic pain is a universal public health problem with nearly one third of global human involved, which causes significant distressing personal burden. After painful stimulus, neurobiological changes occur not only in peripheral nervous system but also in central nervous system where somatosensory cortex is important for nociception. Being an ion channel, transient receptor potential vanilloid 1 (TRPV1) act as an inflammatory detector in the brain. Thymic stromal lymphopoietin (TSLP) is a potent neuroinflammation mediator after nerve injury. Bleomycin is applied to treat dermatologic diseases, and its administration elicits local painful sensation. However, whether bleomycin administration can cause chronic pain remains unknown. In the present study, we aimed to investigate how mice develop chronic pain after receiving repeated bleomycin administration. In addition, the relevant neurobiological brain changes after noxious stimuli were clarified. C57BL/6 mice aged five- to six-weeks were randomly classified into two group, PBS (normal) group and bleomycin group which bleomycin was intradermally administered to back five times a week over a three-week period. Calibrated forceps testing was used to measure mouse pain threshold. Western blots were used to assess neuroinflammatory response; immunofluorescence assay was used to measure the status of neuron apoptosis, glial reaction, and neuro-glial communication. Bleomycin administration induced mechanical nociception and activated both TRPV1 and TSLP/TSLPR/pSTAT5 signals in mouse somatosensory cortex. Through these pathways, bleomycin not only activates glial reaction but also causes neuronal apoptosis. TRPV1 and TSLP/TSLPR/pSTAT5 signaling had co-labeled each other by immunofluorescence assay. Taken together, our study provides a new chronic pain model by repeated intradermal bleomycin injection by activating TRPV1 and glial reaction-mediated neuroinflammation via TSLP/TSLPR/pSTAT5 signals.