Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(23): e2207685, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36897028

RESUMO

Because of their exceptional physical and thermal properties, cellulose nanocrystals (CNCs) are a highly promising bio-based material for reinforcing fillers. Studies have revealed that some functional groups from CNCs can be used as a capping ligand to coordinate with metal nanoparticles or semiconductor quantum dots during the fabrication of novel complex materials. Therefore, through CNCs ligand encapsulation and electrospinning, perovskite-NC-embedded nanofibers with exceptional optical and thermal stability are demonstrated. The results indicate that, after continuous irradiation or heat cycling, the relative photoluminescence (PL) emission intensity of the CNCs-capped perovskite-NC-embedded nanofibers is maintained at ≈90%. However, the relative PL emission intensity of both ligand-free and long-alkyl-ligand-doped perovskite-NC-embedded nanofibers decrease to almost 0%. These results are attributable to the formation of specific clusters of perovskite NCs along with the CNCs structure and thermal property improvement of polymers. CNCs-doped luminous complex materials offer a promising avenue for stability-demanding optoelectronic devices and other novel optical applications.

2.
J Basic Microbiol ; 56(11): 1234-1243, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27282981

RESUMO

Proteomic approaches were applied to investigate whether Photobacterium damselae subsp. piscicida (Phdp) can directly sense and respond to growth conditions under different salinities, 0.85% and 3.5% NaCl concentrations, mimicking the osmotic conditions in host and marine water bodies, respectively. Proteins significantly altered were analyzed by two-dimensional gel electrophoresis (2-DE), liquid chromatography-electrospray ionization-quadrupole-time-of-flight tandem mass spectrometry (LC-ESI-Q-TOF MS/MS) and bioinformatics analysis, thus resulting in 16 outer membrane proteins (OMPs), 12 inner membrane proteins (IMPs), and 20 cytoplasmic proteins (CPs). Quantitative real-time PCR was also applied to monitor the mRNA expression level of these target proteins. Cluster of orthologous groups of protein (COG) analysis revealed that when shifting from 3.5% to 0.85% salinity, the majority of the up-regulated proteins were involved in posttranslational modification, protein turnover, and chaperones, while the down-regulated proteins were mainly related to energy production and conversion, compatible solutes (carbohydrates, amino acids and their derivatives) biogenesis and transport. Differentially expressed proteins identified in the current study could be used to elucidate the salt adaptation mechanisms of Phdp during their transition between host cells and the marine habitats.


Assuntos
Photobacterium/genética , Photobacterium/fisiologia , Proteoma , Tolerância ao Sal , Animais , Eletroforese em Gel Bidimensional , Doenças dos Peixes/microbiologia , Osmorregulação/genética , Photobacterium/crescimento & desenvolvimento , Photobacterium/ultraestrutura , Proteômica , Reação em Cadeia da Polimerase em Tempo Real , Tolerância ao Sal/genética , Cloreto de Sódio/farmacologia , Espectrometria de Massas em Tandem
3.
ACS Sens ; 6(9): 3214-3223, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34461015

RESUMO

Water-borne pathogens are mostly generated due to poor sanitation, industrial effluents, and sewage sludge, leading to a significant increase in mortality rate. To prevent this, we need a simple, user-friendly, and rapid on-site detection tool of pathogens, i.e., a biosensor. As contaminated water mainly contains (80%) coliform bacteria, of which Escherichia coli is the major species, we have developed a screen-printed paper-based, label-free biosensor for the detection of E. coli in water. A nanoarchitectured graphene oxide (GO), as a fast electron-transfer flatland, was deposited on the screen-printed graphene (G) on a hydrophobic paper, followed by the immobilization of lectin Concanavalin A (ConA) as a biorecognition element for a GGO_ConA-biosensing electrode. The electrochemical characterization of GGO_ConA shows fast electron transfer with a calculated electroactive surface area of 0.16 cm2. The biosensor performance was tested in the sludge water and beach water (real sample) as an analyte using the electrochemical impedance spectroscopy (EIS) technique. The charge-transfer resistance (Rct) of GGO_ConA increases linearly with the bacterial concentration in the range of 10-108 CFU mL-1 with an estimated limit of detection (LOD) of 10 CFU mL-1, which indicates the ultrasensitivity of our biosensor, with 100 times more sensitivity than previous studies. Our reported biosensor, being cost-effective, eco-friendly, and ultrasensitive, may serve greatly as a portable monitoring kit for checking water-borne bacterial contamination.


Assuntos
Grafite , Escherichia coli , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA