RESUMO
Lung cancer is one of the deadliest cancers worldwide, including in Taiwan. The poor prognosis of the advanced lung cancer lies in delayed diagnosis and non-druggable targets. It is worth paying more attention to these ongoing issues. Public databases and an in-house cohort were used for validation. The KM plotter was utilized to discover the clinical significance. GSEA and GSVA were adopted for a functional pathway survey. Molecular biological methods, including proliferation, migration, and the EMT methods, were used for verification. Based on public databases, the increased expression of Ladinin 1 (LAD1) was presented in tumor and metastatic sites. Furthermore, an in-house cohort revealed a higher intensity of LAD1 in tumor rather than in normal parts. The greater the expression of LAD1 was, the shorter the duration of lung adenocarcinoma (LUAD) patient survival. Moreover, the association of B3GNT3 with LAD1 affected the survival of LUAD patients. Functional analyses using GSEA and GSVA revealed the associations with survival, migration, invasion, and EMT. Biologic functions supported the roles of LAD1 in proliferation via the cell cycle and migration in EMT. This study reveals that LAD1 plays a major role in regulating proliferation and migration in lung cancer and impacts survival in LUAD. It is worth investing in further studies and in the development of drugs targeting LAD1.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Glicoproteínas de Membrana , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Glicoproteínas de Membrana/genética , TaiwanRESUMO
BACKGROUND: Afatinib has shown favorable response rates (RRs) and longer progression free survival (PFS) in lung cancer patients harboring EGFR mutations compared with standard platinum-based chemotherapy. However, serious adverse drug reactions (ADRs) limit the clinical application of afatinib. METHODS: We designed a retrospective study, enrolling all patients with metastatic lung adenocarcinoma who were diagnosed and treated with 30 or 40 mg daily afatinib as their initial treatment in three Kaohsiung Medical University-affiliated hospitals in Taiwan. RESULTS: A total of 179 patients were enrolled in the study, of which 102 (57%) and 77 (43%) received 30 mg and 40 mg afatinib daily as their initial treatment, respectively. The patients initially using 30 mg afatinib daily had a similar RR (75% vs. 83%, p = 0.1672), median PFS (14.5 vs. 14.8 months, log-rank p = 0.4649), and median OS (34.0 vs. 25.2 months, log-rank p = 0.5982) compared with those initially using 40 mg afatinib daily. Patients initially receiving 30 mg afatinib daily had fewer ADRs compared with those using 40 mg daily. The overall incidence of moderate and severe ADRs was significantly lower in patients receiving 30 mg afatinib daily compared with those using 40 mg daily (49% vs. 77%, p = 0.002); similar findings was observed in terms of severe ADRs (7% vs. 24%, p < 0.0001). CONCLUSION: Patients receiving 30 mg afatinib daily as their initial treatment had similar RR, PFS, OS, but significantly fewer serious ADRs, as compared with those using 40 mg as their starting dose.
Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Afatinib/administração & dosagem , Antineoplásicos/administração & dosagem , Éxons/genética , Deleção de Genes , Neoplasias Pulmonares/tratamento farmacológico , Mutação Puntual , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/secundário , Afatinib/efeitos adversos , Idoso , Antineoplásicos/efeitos adversos , Esquema de Medicação , Feminino , Genes erbB-1 , Humanos , Modelos Lineares , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Intervalo Livre de Progressão , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Estudos Retrospectivos , Taiwan , Resultado do TratamentoRESUMO
For decades, lung cancer has been the leading cause of cancer-related death worldwide. Hypoxia-inducible factors (HIFs) play critical roles in mediating lung cancer development and metastasis. The present study aims to clarify how HIF's over-activation affects lung cancer angiogenesis not only in a normoxic condition, but also a hypoxic niche. Our study shows that human lung cancer exhibits elevated levels of ceruloplasmin (CP), which has a negative impact on the prognosis of patients. CP affects the cellular Fe2+ level, which inactivates prolyl hydroxylase (PHD) 1 and 2, resulting in HIF-2α enhancement. Increased HIF-2α leads to vascular endothelial growth factor-A (VEGF-A) secretion and angiogenesis. The expression of CP is under the epigenetic control of miR-145-5p. Restoration of miR-145-5p by miRNA mimics transfection decreases CP expression, increases Fe2+ and PHD1/2 levels and HIF hydroxylation while reduced HIF-2α levels resulting in the inhibition of tumor angiogenesis. In contrast, inhibition of miR-145-5p by miRNA inhibitors increases the expression of CP and VEGF-A in lung cancer cells. Significantly, miR-145-5p expression is lost in the tumor samples of lung cancer patients, and low miR-145-5p expression is strongly correlated with a shorter overall survival time. In conclusion, the current study reveals the clinical importance and prognostic value of miR-145-5p and CP. It identifies a unique mechanism of HIF-2α over-activation, which is mediated by iron imbalance of the iron-PHD coupling that modulates tumor angiogenesis.
Assuntos
Adenocarcinoma de Pulmão/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ceruloplasmina/metabolismo , Ferro/metabolismo , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , Neovascularização Patológica/metabolismo , Prolil Hidroxilases/metabolismo , Adenocarcinoma de Pulmão/enzimologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/mortalidade , Hipóxia Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Ceruloplasmina/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , MicroRNAs/genética , Neovascularização Patológica/enzimologia , Neovascularização Patológica/genética , Prognóstico , Esferoides Celulares/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Lung cancer is one of the leading causes of cancer-related death globally, thus elucidation of its molecular pathology is highly highlighted. Aberrant alterations of the spindle assembly checkpoint (SAC) are implicated in the development of cancer due to abnormal cell division. TTK (Thr/Tyr kinase), a dual serine/threonine kinase, is considered to act as a cancer promoter by controlling SAC. However, the mechanistic details of how TTK-mediated signaling network supports cancer development is still a mystery. Here, we found that TTK was upregulated in the tumor tissue of patients with lung cancer, and enhanced tumor growth and metastasis in vitro and in vivo. Mechanistically, TTK exerted a significant enhancement in cancer growth by neurotensin (NTS) upregulation, and subsequently increased the expression of cyclin A and cdk2, which was resulting in the increase of DNA synthesis. In contrast, TTK increased cell migration and epithelial-to-mesenchymal transition (EMT) by enhancing the expression of dihydropyrimidinase-like 3 (DPYSL3) followed by the increase of snail-regulated EMT, thus reinforce metastatic potential and ultimately tumor metastasis. TTK and DPYSL3 upregulation was positively correlated with a poor clinical outcome in patients with lung cancer. Together, our findings revealed a novel mechanism underlying the oncogenic potential effect of TTK and clarified its downstream factors NTS and DPYSL3 might represent a novel, promising candidate oncogenes with potential therapeutic vulnerabilities in lung cancer.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Progressão da Doença , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Musculares/metabolismo , Neurotensina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Regulação para Cima/genética , Animais , Carcinogênese/genética , Carcinogênese/patologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Técnicas de Silenciamento de Genes , Humanos , Camundongos Nus , Modelos Biológicos , Metástase Neoplásica , Prognóstico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidoresRESUMO
Lung cancer is the most devastating malignancy in the world. Beyond genetic research, epigenomic studies-especially investigations of microRNAs-have grown rapidly in quantity and quality in the past decade. This has enriched our understanding about basic cancer biology and lit up the opportunities for potential therapeutic development. In this review, we summarize the involvement of microRNAs in lung cancer carcinogenesis and behavior, by illustrating the relationship to each cancer hallmark capability, and in addition, we briefly describe the clinical applications of microRNAs in lung cancer diagnosis and prognosis. Finally, we discuss the potential therapeutic use of microRNAs in lung cancer.
Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , Animais , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/patologia , MicroRNAs/genética , PrognósticoRESUMO
PURPOSE OF THE STUDY: Type 1 and type 2 diabetes mellitus (DM) are chronic T-cell-mediated inflammatory diseases. Metformin is a widely used drug for type 2 DM that reduces the need for insulin in type 1 DM. However, whether metformin has an anti-inflammatory effect for treating DM is unknown. We investigated the anti-inflammatory mechanism of metformin in the human monocytic leukemia cell line THP-1. MATERIALS AND METHODS: The human monocytic leukemia cell line THP-1 was pretreated with metformin and stimulated with lipopolysaccharide (LPS). The production of T-helper (Th)-1-related chemokines including interferon-γ-induced protein-10 (IP-10) and monocyte chemoattractant protein-1 (MCP-1), Th2-related chemokine macrophage-derived chemokine, and the proinflammatory chemokine tumor necrosis factor-α was measured using enzyme-linked immunosorbent assay. Intracellular signaling pathways were investigated using Western blot analysis and chromatin immunoprecipitation assay. RESULTS: Metformin suppressed LPS-induced IP-10 and MCP-1 production as well as LPS-induced phosphorylation of c-Jun N-terminal kinase (JNK), p38, extracellular signal-regulated kinase (ERK), and nuclear factor-kappa B (NF-κB). Moreover, metformin suppressed LPS-induced acetylation of histones H3 and H4 at the IP-10 promoter. CONCLUSIONS: Metformin suppressed the production of Th1-related chemokines IP-10 and MCP-1 in THP-1 cells. Suppressive effects of metformin on IP-10 production might be attributed at least partially to the JNK, p38, ERK, and NF-κB pathways as well as to epigenetic regulation through the acetylation of histones H3 and H4. These results indicated the therapeutic anti-inflammatory potential of metformin.
Assuntos
Quimiocinas/metabolismo , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Monócitos/efeitos dos fármacos , Acetilação , Quimiocina CCL2/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Monócitos/metabolismo , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas , Transdução de Sinais/efeitos dos fármacos , Células THP-1 , Fator de Necrose Tumoral alfa/metabolismoRESUMO
BACKGROUND: Influenza B virus infection is generally considered to be mild and is rarely associated pulmonary cardiovascular involvement in adults. However fatal complications may occur. CASE PRESENTATION: A 43-year-old previously healthy Taiwanese male came to our emergency department due to high fever, chills, general malaise and myalgia for about 4 days. An influenza rapid test from a throat swab was negative. Chest radiography showed mild left lung infiltration and levofloxacin was prescribed. However, progressive shortness of breath and respiratory failure developed 48 h later after hospitalization. Emergent intubation was performed and he was transferred to the intensive care unit where oseltamivir (Tamiflu, Roche) 75 mg orally twice daily was given immediately. In the intensive care unit, cardiac catheterization revealed normal coronary arteries. However, a markedly elevated cardiac enzyme level (Troponin I level was up to 71.01 ng/ml), a positive cardiac magnetic resonance imaging findings and no coronary artery stenosis led to the diagnosis of acute myocarditis. Subsequent real-time polymerase chain reaction of endotracheal aspirates was positive for influenza B. His condition gradually improved and he was successfully weaned from the ventilator on day 22. He was discharged without prominent complications on day 35. CONCLUSION: Influenza B infection is not always a mild disease. Early detection, early administration of antiviral agents, appropriate antibiotics and best supportive care, is still the gold standard for patients such as the one reported.
Assuntos
Influenza Humana/diagnóstico , Miocardite/diagnóstico , Síndrome do Desconforto Respiratório/diagnóstico , Doença Aguda , Adulto , Antibacterianos/uso terapêutico , Ecocardiografia , Humanos , Vírus da Influenza B/genética , Influenza Humana/terapia , Influenza Humana/virologia , Imageamento por Ressonância Magnética , Masculino , Miocardite/terapia , Miocardite/virologia , Reação em Cadeia da Polimerase em Tempo Real , Respiração Artificial , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/virologia , Tomografia Computadorizada por Raios XRESUMO
Chronic inflammatory airway diseases like asthma and chronic obstructive pulmonary disease are major health problems globally. Airway epithelial cells play important role in airway remodeling, which is a critical process in the pathogenesis of diseases. This study aimed to demonstrate that LIGHT, an inflammatory factor secreted by T cells after allergen exposure, is responsible for promoting airway remodeling. LIGHT increased primary human bronchial epithelial cells (HBECs) undergoing epithelial-mesenchymal transition (EMT) and expressing MMP-9. The induction of EMT was associated with increased NF-κB activation and p300/NF-κB association. The interaction of NF-κB with p300 facilitated NF-κB acetylation, which in turn, was bound to the promoter of ZEB1, resulting in E-cadherin downregulation. LIGHT also stimulated HBECs to produce numerous cytokines/chemokines that could worsen airway inflammation. Furthermore, LIGHT enhanced HBECs to secrete activin A, which increased bronchial smooth muscle cell (BSMC) migration. In contrast, depletion of activin A decreased such migration. The findings suggest a new molecular determinant of LIGHT-mediated pathogenic changes in HBECs and that the LIGHT-related vicious cycle involving HBECs and BSMCs may be a potential target for the treatment of chronic inflammation airway diseases with airway remodeling.
Assuntos
Remodelação das Vias Aéreas , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Acetilação , Ativinas/metabolismo , Brônquios/citologia , Adesão Celular , Quimiotaxia , Proteína p300 Associada a E1A/metabolismo , Células Epiteliais/enzimologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Proteínas de Homeodomínio/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Miócitos de Músculo Liso/citologia , NF-kappa B/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de ZincoRESUMO
We propose that the aryl hydrocarbon receptor (AhR), a unique chemical sensor, is critical in controlling mast cell differentiation, growth, and function in vitro and in vivo. In antigen-stimulated mast cells, exposure to AhR ligands resulted in a calcium- and reactive oxygen species (ROS)-dependent increase of reversible oxidation in and reduced activity of SHP-2 phosphatase, leading to enhanced mast cell signaling, degranulation, and mediator and cytokine release, as well as the in vivo anaphylactic response. Surprisingly, significant mast cell deficiency was noted in AhR-null mice due to defective calcium signaling and mitochondrial function, concomitant with reduced expression of c-kit and cytosolic STAT proteins, as well as enhanced intracellular ROS and apoptosis. Consequently, AhR-null mast cells responded poorly to stimulation, demonstrating a critical role of AhR signaling in maintaining mast cell homeostasis.
Assuntos
Cálcio/imunologia , Imunoglobulina E/imunologia , Mastócitos/fisiologia , Espécies Reativas de Oxigênio/imunologia , Receptores de Hidrocarboneto Arílico/imunologia , Animais , Antígenos/imunologia , Apoptose , Carbazóis/farmacologia , Degranulação Celular , Células Cultivadas , Deleção de Genes , Homeostase , Humanos , Mastócitos/efeitos dos fármacos , Mastócitos/patologia , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Oxirredução/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 11/imunologia , Receptores de Hidrocarboneto Arílico/genética , Transdução de SinaisRESUMO
BACKGROUND: Implantable venous access port (IVAP)-related blood stream infections (BSIs) are one of the most common complications of implantable venous ports. The risk factors and pathogens for IVAP-related BSIs are still controversial. METHODS: We retrospectively reviewed all patients who received IVAPs at a Hospital in Taiwan from January 1, 2011 to June 31, 2014. Two types of venous port, BardPort® 6.6 fr (Bard port) and Autosuture Chemosite® 7.5 fr (TYCO port) were used. All patients with clinically proven venous port-related BSIs were enrolled. RESULTS: A total of 552 patients were enrolled. There were 34 episodes of IVAP-related BSIs during the study period for a total incidence of 0.177 events/1000 catheter days. Port type (TYCO vs. Bard, HR = 7.105 (95% confidence interval (CI), 1.688-29.904), p = 0.0075), age > 65 years (HR = 2.320 (95 % CI, 1.179-4.564), p = 0.0148), and lung cancer (HR = 5.807 (95% CI, 2.946-11.447), p < 0.001) were risk factors for port infections. We also found that no local sign of infection was significantly associated with the growth of gram-negative bacilli (p = 0.031). CONCLUSIONS: TYCO venous ports, age > 65 years, and lung cancer were all significant risk factors for IVAP-related BSIs, and no sign of infection was significantly associated with the growth of gram-negative bacilli.
Assuntos
Infecções Relacionadas a Cateter/epidemiologia , Cateteres de Demora/efeitos adversos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Infecções por Bactérias Gram-Negativas/microbiologia , Neoplasias/complicações , Dispositivos de Acesso Vascular/efeitos adversos , Idoso , Infecções Relacionadas a Cateter/microbiologia , Feminino , Seguimentos , Humanos , Incidência , Masculino , Neoplasias/terapia , Prognóstico , Estudos Retrospectivos , Taiwan/epidemiologia , Dispositivos de Acesso Vascular/classificaçãoRESUMO
BACKGROUND: An implantable port device provides an easily accessible central route for long-term chemotherapy. Venous catheter migration is one of the rare complications of venous port implantation. It can lead to side effects such as pain in the neck, shoulder, or ear, venous thrombosis, and even life-threatening neurologic problems. To date, there are few published studies that discuss such complications. METHODS: This retrospective study of venous port implantation in a single center, a Taiwan hospital, was conducted from January 2011 to March 2013. Venous port migration was recorded along with demographic and characteristics of the patients. RESULTS: Of 298 patients with an implantable import device, venous port migration had occurred in seven, an incidence rate of 2.3%. All seven were male and had received the Bard port Fr 6.6 which had smaller size than TYCO port Fr 7.5 and is made of silicon. Significantly, migration occurred in male patients (P = 0.0006) and in those with lung cancer (P = 0.004). Multivariable logistic regression analysis revealed that lung cancer was a significant risk factor for port migration (odds ratio: 11.59; P = 0.0059). The migration rate of the Bard port Fr 6.6 was 6.7%. The median time between initial venous port implantation and port migration was 35.4 days (range, 7 to 135 days) and 71.4% (5/7) of patients had port migration within 30 days after initial port implantation. CONCLUSIONS: Male sex and lung cancer are risk factors for venous port migration. The type of venous port is also an important risk factor.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Cateterismo Venoso Central/efeitos adversos , Cateteres de Demora/efeitos adversos , Neoplasias/tratamento farmacológico , Trombose Venosa/etiologia , Idoso , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Fatores de Risco , TaiwanRESUMO
Lung squamous cell carcinoma (LUSC) remains a difficult-to-treat disease with a poor prognosis. While prominin-1 (PROM1/CD-133) is largely investigated in a variety of malignancies, the role of prominin-2 (PROM2), the other member of the prominin family, has not been studied in LUSC. Transcriptomic data derived from matched tumor and adjacent non-tumorous lung tissues of LUSC patients were employed to conduct an in-depth analysis of the genetic and epigenetic regulation of prominin genes within LUSC, utilizing bioinformatic approaches. Furthermore, cellular behavior experiments were executed to discern the biological functions of PROM2. It was observed that PROM2, in contrast to PROM1, exhibited significant upregulation and overexpression at both the mRNA and protein levels in LUSC, and this upregulation was correlated with shortened patient survival. Transcriptomic analysis unveiled DNA methylation as an epigenetic regulatory mechanism associated with PROM2 expression. Notably, two transcription factors, CBFB and NRIP1, were identified as potential regulators of PROM2 expression. Subsequent in vitro investigations demonstrated that knocking down PROM2 led to the inhibition of cancer cell migration and the epithelial-to-mesenchymal transition (EMT). In summary, the pronounced upregulation of PROM2 in LUSC patients was linked to an unfavorable prognosis, possibly attributable to its influence on cancer cell migration and EMT. These findings suggest that PROM2 could serve as a promising diagnostic biomarker and therapeutic target in the management of LUSC. Consequently, further research into the mechanistic aspects and potential therapeutic interventions targeting PROM2 is warranted in the clinical context.
RESUMO
Lung adenocarcinoma (LUAD) is one of the deadliest cancers regarding both mortality rate and number of deaths and warrants greater effort in the development of potential therapeutic targets. The enhancer of rudimentary homolog (ERH) has been implicated in the promotion and progression of certain types of cancer. In the present study, ERH was assessed for its expression pattern and survival association with LUAD in public transcriptomic and proteomic databases. Bioinformatic methods and data from websites, including University of Alabama at Birmingham CANcer data analysis Portal and The Cancer Genome Atlas, were utilized to demonstrate the functional behaviors and corresponding pathways of ERH in LUAD. Human A549 and CL10 cell lines were used to validate the findings via functional assays. It was demonstrated that the expression of ERH, at both the transcriptomic and proteomic levels, was higher in LUAD compared with in adjacent nontumor lung tissue and was associated with worse survival prognosis. Moreover, high ERH expression was correlated with more aggressive functional states, such as cell cycle and invasion in LUAD, and the positive ERHcorrelated gene set was associated with worse survival and an immunosuppressive tumor microenvironment. Small nuclear ribonucleoprotein polypeptide G was identified as a molecule that potentially interacted with ERH. Lastly, it was demonstrated that ERH promoted epithelialmesenchymal transition and cell migration in vitro, but not proliferation. In conclusion, higher expression of ERH in LUAD may facilitate cancer progression and confer worse outcomes. Further deep investigation into the role of ERH in LUAD is needed.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , Proteômica , Microambiente TumoralRESUMO
The poor outcome of patients with lung adenocarcinoma (LUAD) highlights the importance to identify novel effective prognostic markers and therapeutic targets. Long noncoding RNAs (lncRNAs) have generally been considered to serve important roles in tumorigenesis and the development of various types of cancer, including LUAD. Here, we aimed to investigate the role of ENTPD3-AS1 (ENTPD3 Antisense RNA 1) in LUAD and to explore its potential mechanisms by performing comprehensive bioinformatic analyses. The regulatory effect of ENTPD3-AS1 on the expression of NR3C1 was validated by siRNA-based silencing. The effect of miR-421 on the modulation of NR3C1 was determined by miRNA mimics and inhibitors transfection. ENTPD3-AS1 was expressed at lower levels in tumor parts and negatively correlated with unfavorable prognosis in LUAD patients. It exerted functions as a tumor suppressor gene by competitively binding to oncomir, miR-421, thereby attenuating NR3C1 expression. Transfection of lung cancer A549 cells with miR-421 mimics decreased the expression of NR3C1. Transfection of lung cancer A549 cells with miR-421 inhibitors increased the expression of NR3C1 with lower cellular functions as proliferation and migration via epithelial-mesenchymal transition. In addition, inhibition of ENTPD3-AS1 by siRNA transfection decreased the levels of NR3C1, supporting the ENTPD3-AS1/miR-421/NR3C1 cascade. Moreover, the bioinformatic analysis also showed that ENTPD3-AS1 could interact with the RNA-binding proteins (RBPs), CELF2 and QKI, consequently regulating RNA expression and processing. Taken together, we identified that ENTPD3-AS1 and its indirect target NR3C1 can act as novel biomarkers for determining the prognosis of patients with LUAD, and further study is required.
RESUMO
BACKGROUND: Evidence for the impact of inappropriate antimicrobial therapy on bacteremia is mainly from studies in medical centers. We investigated the impact of inappropriate antimicrobial therapy on bacteremia in a community hospital. In particular, patients from the hospital's affiliated nursing home were sent to the hospital with adequate referral information. METHODS: We performed a retrospective study to collect data of patients with bacteremia in a community hospital in Taiwan from 2005 to 2007. RESULTS: A total of 222 patients with blood stream infection were diagnosed, of whom 104 patients (46.8%) died. The rate of initial inappropriate antibiotic prescriptions was high (59%). Multivariate analysis revealed that patients with initial inappropriate antibiotics, patients with ventilator support and patients requiring ICU care were the independent predictors for inhospital mortality. Patients referred from the hospital-affiliated nursing home and patients with normal WBC counts had better survival outcome. More than 80% cases infected with methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecalis received initial inappropriate antimicrobial therapy. With the longer delay to administer appropriate antibiotic, a trend of higher mortality rates was observed. CONCLUSIONS: Bacteremia patients from a hospital-affiliated nursing home had a better prognosis, which may have been due to the adequate referral information. Clinicians should be aware of the commonly ignored drug resistant pathogens, and efforts should be made to avoid delaying the administration of appropriate antibiotic therapy.
Assuntos
Antibacterianos/administração & dosagem , Bacteriemia/tratamento farmacológico , Hospitais Comunitários/estatística & dados numéricos , Prescrição Inadequada/estatística & dados numéricos , Casas de Saúde/estatística & dados numéricos , Idoso , Bacteriemia/epidemiologia , Bacteriemia/mortalidade , Feminino , Mortalidade Hospitalar , Humanos , Masculino , Encaminhamento e Consulta , Estudos Retrospectivos , Taiwan/epidemiologiaRESUMO
Lung cancer, one of the leading causes of death worldwide, is often associated with a state of immune suppression, but the molecular and functional basis remains enigmatic. Evidence is provided in this paper supporting the role of lung cancer-derived soluble lectin, galectin-1, as a culprit in dendritic cell (DC) anergy. We have shown that galectin-1 is highly expressed in lung cancer cell lines, together with the serum and surgical samples from lung cancer patients. Functionally, lung cancer-derived galectin-1 has been shown to alter the phenotypes of monocyte-derived DCs (MdDCs) and impair alloreactive T cell response, concomitant with the increase of CD4(+)CD25(+)FOXP3(+) regulatory T cells. The regulatory effect of galectin-1 is mediated, in part, through its ability to induce, in an Id3 (inhibitor of DNA binding 3)-dependent manner, the expression of IL-10 in monocytes and MdDCs. This effect is inhibited by the addition of lactose, which normalizes the phenotypic and functional alterations seen in MdDCs. Of note, significant upregulation of IL-10 was seen in tumor-infiltrating CD11c(+) DCs in human lung cancer samples. This was also noted in mice transplanted with lung cancer cells, but not in those receiving tumor cells with galectin-1 knockdown. Furthermore, a significant reduction was noted in lung cancer incidence and in the levels of IL-10-expressing, tumor-infiltrating DCs, in mice receiving galectin-1-silenced tumor cells. These results thus suggest that the galectin-1/IL-10 functional axis may be crucial in lung cancer-mediated immune suppression, and that galectin-1 may serve as a target in the development of lung cancer immunotherapy.
Assuntos
Células Dendríticas/imunologia , Células Dendríticas/patologia , Galectina 1/fisiologia , Proteínas Inibidoras de Diferenciação/fisiologia , Interleucina-10/fisiologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/fisiologia , Transdução de Sinais/imunologia , Animais , Brônquios/imunologia , Brônquios/metabolismo , Brônquios/patologia , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Linhagem Celular Tumoral , Movimento Celular/imunologia , Células Cultivadas , Anergia Clonal/imunologia , Células Dendríticas/metabolismo , Humanos , Imunoterapia Adotiva/métodos , Proteínas Inibidoras de Diferenciação/biossíntese , Interleucina-10/biossíntese , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/biossíntese , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologiaRESUMO
BACKGROUND: The poor outcome of patients with lung squamous cell carcinoma (LUSC) highlights the importance of the identification of novel effective prognostic markers and therapeutic targets. Long noncoding RNAs (lncRNAs) have generally been considered to serve important roles in tumorigenesis and the development of various types of cancer, including LUSC. METHODS: Here, we aimed to investigate the role of LINC02323 in LUSC and its potential mechanisms by performing comprehensive bioinformatic analyses. RESULTS: LINC02323 was elevated and positively associated with unfavorable prognosis of LUSC patients. LINC02323 exerted oncogenic function by competitively binding to miR-1343-3p and miR-6783-3p, thereby upregulating L1CAM expression. Indeed, we also determined that LINC02323 could interact with the RNA-binding protein DDX3X, which regulates various stages of RNA expression and processing. CONCLUSION: Taken together, we identified that LINC02323 and its indirect target L1CAM can act as novel biomarkers for determining the prognosis of patients with LUSC and thus deserves further study.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , MicroRNAs , Molécula L1 de Adesão de Célula Nervosa , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Molécula L1 de Adesão de Célula Nervosa/genética , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Regulação Neoplásica da Expressão Gênica , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Prognóstico , RNA Longo não Codificante/genética , Pulmão/patologiaRESUMO
BACKGROUND: Reprogramming of metabolism is strongly associated with the development of cancer. However, the role of metabolic reprogramming in the remodeling of pre-metastatic niche (PMN), a key step in metastasis, is still unknown. We aimed to investigate the metabolic alternation during lung PMN formation in breast cancer. METHODS: We assessed the transcriptomes and lipidomics of lung of MMTV-PyVT mice by microarray and liquid chromatography-tandem mass mass spectrometry before lung metastasis. The validation of gene or protein expressions was performed by quantitative real-time polymerase chain reaction or immunoblot and immunohistochemistry respectively. The lung fibroblasts were isolated from mice and then co-cultured with breast cancer to identify the influence of cancer on the change of lung fibroblasts in PMN. RESULTS: We demonstrated changes in the lipid profile and several lipid metabolism genes in the lungs of breast cancer-bearing MMTV-PyVT mice before cancer spreading. The expression of ACACA (acetyl-CoA carboxylase α) was downregulated in the lung fibroblasts, which contributed to changes in acetylation of protein's lysine residues and the synthesis of fatty acid. The downregulation of ACACA in lung fibroblasts triggered a senescent and inflammatory phenotypic shift of lung fibroblasts in both in vivo and in vitro models. The senescence-associated secretory phenotype of lung fibroblasts enabled the recruitment of immunosuppressive granulocytic myeloid-derived suppressor cells into the lungs through the production of CXCL1 in the lungs. Knock-in of ACACA prevented lung metastasis in the MMTV-PyVT mouse model, further supporting that ACACA was involved in the remodeling of the lung PMN. CONCLUSIONS: Taken together, these data revealed a mechanism by which ACACA downregulation directed the formation of an immunosuppressive lung PMN in breast cancer.
Assuntos
Acetil-CoA Carboxilase , Neoplasias da Mama , Senescência Celular , Fibroblastos , Neoplasias Pulmonares , Animais , Camundongos , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Senescência Celular/genética , Regulação para Baixo , Fibroblastos/metabolismo , Fibroblastos/patologia , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , HumanosRESUMO
Background: Lung cancer is associated with a high mortality rate and often complicated with malignant pleural effusion (MPE), which has a very poor clinical outcome with a short life expectancy. However, our understanding of cell-specific mechanisms underlying the pathobiology of pleural metastasis remains incomplete. Methods: We analyzed single-cell transcriptomes of cells in pleural effusion collected from patients with lung cancer and congestive heart failure (as a control), respectively. Soluble and complement factors were measured using a multiplex cytokine bead assay. The role of ferroptosis was evaluated by GPX4 small interfering RNA (siRNA) transfection and overexpression. Results: We found that the mesothelial-mesenchymal transition (MesoMT) of the pleural mesothelial cells contributed to pleural metastasis, which was validated by lung cancer/mesothelial cell co-culture experiments. The ferroptosis resistance that protected cancer from death which was secondary to extracellular matrix detachment was critical for pleural metastasis. We found a universal presence of immune-suppressive lipid-associated tumor-associated macrophages (LA-TAMs) with complement cascade alteration in the MPE of the lung cancer patients. Specifically, upregulated complement factors were also found in the MPE, and C5 was associated with poor overall survival in the lung cancer patients with epidermal growth factor receptor mutation. Plasmacytoid dendritic cells (pDCs) exhibited a dysfunctional phenotype and pro-tumorigenic feature in the primary cancer. High expression of the gene set extracted from pDCs was associated with a poor prognosis in the lung cancer patients. Receptor-ligand interaction analysis revealed that the pleural metastatic niche was aggravated by cross-talk between mesothelial cells-cancer cells/immune cells via TNC and ICAM1. Conclusions: Taken together, our results highlight cell-specific mechanisms involved in the pathobiological development of pleural metastasis in lung cancer. These results provide a large-scale and high-dimensional characterization of the pleural microenvironment and offer a useful resource for the future development of therapeutic drugs in lung cancer.
Assuntos
Neoplasias Pulmonares , Derrame Pleural , Humanos , Neoplasias Pulmonares/genética , Carcinogênese , Análise de Sequência de RNA , Receptores ErbB , Microambiente Tumoral/genéticaRESUMO
Lung squamous cell carcinoma (LUSC) represents a minor proportion of nonsmall cell lung cancer (NSCLC) harboring a poor prognosis. Herein, retrospective medical record research was performed to investigate real-world treatment patterns and identify the prognostic factors among LUSC patients. A total of 173 patients with a median age of 68 years were enrolled for analysis. Males were predominant (n = 143, 83%) and current or ex-smokers contributed to 78% of the entire cohort. Pleura and lung were the most common metastatic sites, whereas brain metastasis was only 7%. After diagnosis, however, only 107 patients (62%) had received first-line chemotherapy. In the chemotherapy cohort, median progression-free survival (PFS) and overall survival (OS) were 3.9 and 11.1 months, respectively. After multivariable analysis, bone metastasis and the use of first-line single-agent chemotherapy independently predicted shorter PFS. For baseline characteristics, male sex, metastasis to lung, pleura, liver, and bone independently predicted worse OS. Regarding the treatment pattern, patients who had undergone standard first-line doublet therapy and employed targeted therapies after disease progression linked to longer OS. In the real world, even those who underwent chemotherapy still had poor outcome. The findings may help clinicians to orchestrate the treatment strategies for LUSC patients and provide further direction of large-scale studies.