Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Chem Biol ; 31(5): 955-961.e4, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38215746

RESUMO

NLRP1 is an innate immune receptor that detects pathogen-associated signals, assembles into a multiprotein structure called an inflammasome, and triggers a proinflammatory form of cell death called pyroptosis. We previously discovered that the oxidized, but not the reduced, form of thioredoxin-1 directly binds to NLRP1 and represses inflammasome formation. However, the molecular basis for NLRP1's selective association with only the oxidized form of TRX1 has not yet been established. Here, we leveraged AlphaFold-Multimer, site-directed mutagenesis, thiol-trapping experiments, and mass spectrometry to reveal that a specific cysteine residue (C427 in humans) on NLRP1 forms a transient disulfide bond with oxidized TRX1. Overall, this work demonstrates how NLRP1 monitors the cellular redox state, further illuminating an unexpected connection between the intracellular redox potential and the innate immune system.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Dissulfetos , Proteínas NLR , Oxirredução , Tiorredoxinas , Humanos , Dissulfetos/química , Dissulfetos/metabolismo , Tiorredoxinas/metabolismo , Tiorredoxinas/química , Proteínas NLR/metabolismo , Proteínas NLR/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Células HEK293 , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/química , Inflamassomos/metabolismo , Cisteína/metabolismo , Cisteína/química
2.
Cell Chem Biol ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38991619

RESUMO

Mounting evidence indicates that proteotoxic stress is a primary activator of the CARD8 inflammasome, but the complete array of signals that control this inflammasome have not yet been established. Notably, we recently discovered that several hydrophobic radical-trapping antioxidants (RTAs), including JSH-23, potentiate CARD8 inflammasome activation through an unknown mechanism. Here, we report that these RTAs directly alkylate several cysteine residues in the N-terminal disordered region of CARD8. These hydrophobic modifications destabilize the repressive CARD8 N-terminal fragment and accelerate its proteasome-mediated degradation, thereby releasing the inflammatory CARD8 C-terminal fragment from autoinhibition. Consistently, we also found that unrelated (non-RTA) hydrophobic electrophiles as well as genetic mutation of the CARD8 cysteine residues to isoleucines similarly potentiate inflammasome activation. Overall, our results not only provide further evidence that protein folding stress is a key CARD8 inflammasome-activating signal, but also indicate that the N-terminal cysteines can play key roles in tuning the response to this stress.

3.
bioRxiv ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37808697

RESUMO

NLRP1 is an innate immune receptor that detects pathogen-associated signals, assembles into a multiprotein structure called an inflammasome, and triggers a proinflammatory form of cell death called pyroptosis. We previously discovered that the oxidized, but not the reduced, form of thioredoxin-1 directly binds to NLRP1 and represses inflammasome formation. However, the molecular basis for NLRP1's selective association with only the oxidized form of TRX1 has not yet been established. Here, we leveraged Alphafold-Multimer, site-directed mutagenesis, thiol-trapping experiments, and mass spectrometry to reveal that a specific cysteine residue (C427 in humans) on NLRP1 forms a transient disulfide bond with oxidized TRX1. Overall, this work demonstrates how NLRP1 monitors the cellular redox state, further illuminating an unexpected connection between the intracellular redox potential and the innate immune system.

4.
Sci Immunol ; 7(77): eabm7200, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36332009

RESUMO

The danger signals that activate the NLRP1 inflammasome have not been established. Here, we report that the oxidized, but not the reduced, form of thioredoxin-1 (TRX1) binds to NLRP1. We found that oxidized TRX1 associates with the NACHT-LRR region of NLRP1 in an ATP-dependent process, forming a stable complex that restrains inflammasome activation. Consistent with these findings, patient-derived and ATPase-inactivating mutations in the NACHT-LRR region that cause hyperactive inflammasome formation interfere with TRX1 binding. Overall, this work strongly suggests that reductive stress, the cellular perturbation that will eliminate oxidized TRX1 and abrogate the TRX1-NLRP1 interaction, is a danger signal that activates the NLRP1 inflammasome.


Assuntos
Inflamassomos , Tiorredoxinas , Humanos , Inflamassomos/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas NLR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA