Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7684, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539437

RESUMO

Morphology of keratinised toe pads and foot scales, hinging of foot joints and claw shape and size all inform the grasping ability, cursoriality and feeding mode of living birds. Presented here is morphological evidence from the fossil feet of early theropod flyers. Foot soft tissues and joint articulations are qualitatively assessed using laser-stimulated fluorescence. Pedal claw shape and size are quantitatively analysed using traditional morphometrics. We interpret these foot data among existing evidence to better understand the evolutionary ecology of early theropod flyers. Jurassic flyers like Anchiornis and Archaeopteryx show adaptations suggestive of relatively ground-dwelling lifestyles. Early Cretaceous flyers then diversify into more aerial lifestyles, including generalists like Confuciusornis and specialists like the climbing Fortunguavis. Some early birds, like the Late Jurassic Berlin Archaeopteryx and Early Cretaceous Sapeornis, show complex ecologies seemingly unique among sampled modern birds. As a non-bird flyer, finding affinities of Microraptor to a more specialised raptorial lifestyle is unexpected. Its hawk-like characteristics are rare among known theropod flyers of the time suggesting that some non-bird flyers perform specialised roles filled by birds today. We demonstrate diverse ecological profiles among early theropod flyers, changing as flight developed, and some non-bird flyers have more complex ecological roles.


Assuntos
Dinossauros , Sistema Musculoesquelético , Animais , Evolução Biológica , Fósseis , Sistema Musculoesquelético/anatomia & histologia , Adaptação Fisiológica , Dinossauros/anatomia & histologia , Filogenia
2.
PeerJ ; 7: e6243, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30740269

RESUMO

Ospreys are renowned for their fishing abilities, which have largely been attributed to their specialized talon morphology and semi-zygodactyly-the ability to rotate the fourth toe to accompany the first toe in opposition of toes II and III. Anecdotal observations indicate that zygodactyly in Ospreys is associated with prey capture, although to our knowledge this has not been rigorously tested. As a first pass toward understanding the functional significance of semi-zygodactyly in Ospreys, we scoured the internet for images of Osprey feet in a variety of circumstances. From these we cross-tabulated the number of times each of three toe configurations (anisodactylous, zygodactylous, and an intermediate condition between these) was associated with different grasping scenarios (e.g., grasping prey or perched), contact conditions (e.g., fish, other objects, or substrate), object sizes (relative to foot size), and grasping behaviors (e.g., using one or both feet). Our analysis confirms an association between zygodactyly and grasping behavior; the odds that an osprey exhibited zygodactyly while grasping objects in flight were 5.7 times greater than whilst perched. Furthermore, the odds of zygodactyly during single-foot grasps were 4.1 times greater when pictured grasping fish compared to other objects. These results suggest a functional association between predatory behavior and zygodactyly and has implications for the selective role of predatory performance in the evolution of zygodactyly more generally.

3.
J Morphol ; 280(11): 1682-1692, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31441539

RESUMO

The ventral structures of the avian digits are the critical interface between a bird and the item within its grasp (e.g., prey, landing substrate, or object), and as such are vital for ensuring the hunting success and survival of predatory birds. Here, we present the first descriptive analysis of the ventral structures of the toes, toepad morphology, and toepad surface area of several diurnal (Accipitriformes and Falconiformes) and nocturnal species (Strigiformes) of Australian raptors. We compare these with nonpredatory taxa (passeriform and psittaciform) to elucidate possible functional explanations for these differences. Although all groups shared the structural characters of joint, phalanx, ungual, and central (tarsal) pad features, the positioning of these structures in relation to the underlying skeletal framework and subsequent gross morphology differed markedly. Toepads overlying the phalangeal joints were much more developed in raptorial species with protrusional toepads only found on goshawks (Accipiter sp.), falcons, and owls. In contrast, the ventral surface of representative passeriform and parrot species showed overall uniformity in contact surface area, with much flatter toepads. There was only a very low phylogenetic signal in the data indicating that phylogenetic relationships did not have a significant effect on toepad surface area. Linear discriminant analysis indicated that functional prey sizes correlated positively with toepad surface areas. Generalized linear modelling showed that there was a positive, significant relationship between body mass and toepad surface area, and prey category significantly affected the toepad surface areas for Digit I and Digit IV. Overall, the ventral surface of the raptorial foot is subject to considerable variation, with active hunters showing the greatest differences in structures, specifically markedly developed toepads to protrusional toepads, potentially as a means to enable more efficient predatory behaviors and facilitate diet preferences for more difficult to catch prey items.


Assuntos
Pé/anatomia & histologia , Comportamento Predatório , Aves Predatórias/anatomia & histologia , Dedos do Pé/anatomia & histologia , Animais , Austrália , Aves/anatomia & histologia , Aves/fisiologia , Falconiformes , Aves Predatórias/fisiologia , Estrigiformes
4.
Sci Rep ; 9(1): 7076, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31068662

RESUMO

Most birds of prey (raptors), rely heavily on their talons for capturing prey. However, the relationship between talon shape and the ability to take prey is poorly understood. In this study we investigate whether raptor talons have evolved primarily in response to adaptive pressures exerted by different dietary demands, or if talon morphology is largely constrained by allometric or phylogenetic factors. We focus on the hallux talon and include 21 species in total varying greatly in body mass and feeding ecology, ranging from active predation on relatively large prey to obligate scavenging. To quantify the variation in talon shape and biomechanical performance within a phylogenetic framework, we combined three dimensional (3D) geometric morphometrics, finite element modelling and phylogenetic comparative methods. Our results indicate that relative prey size plays a key role in shaping the raptorial talon. Species that hunt larger prey are characterised by both distinct talon shape and mechanical performance when compared to species that predate smaller prey, even when accounting for phylogeny. In contrast to previous results of skull-based analysis, allometry had no significant effect. In conclusion, we found that raptor talon evolution has been strongly influenced by relative prey size, but not allometry and, that talon shape and mechanical performance are good indicators of feeding ecology.


Assuntos
Tamanho Corporal/fisiologia , Casco e Garras/fisiologia , Comportamento Predatório/fisiologia , Aves Predatórias/fisiologia , Animais , Evolução Biológica , Fenômenos Biomecânicos , Dieta , Casco e Garras/diagnóstico por imagem , Filogenia , Aves Predatórias/classificação , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA