Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Mol Ecol ; : e17460, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963031

RESUMO

Tick vectors and tick-borne disease are increasingly impacting human populations globally. An important challenge is to understand tick movement patterns, as this information can be used to improve management and predictive modelling of tick population dynamics. Evolutionary analysis of genetic divergence, gene flow and local adaptation provides insight on movement patterns at large spatiotemporal scales. We develop low coverage, whole genome resequencing data for 92 blacklegged ticks, Ixodes scapularis, representing range-wide variation across the United States. Through analysis of population genomic data, we find that tick populations are structured geographically, with gradual isolation by distance separating three population clusters in the northern United States, southeastern United States and a unique cluster represented by a sample from Tennessee. Populations in the northern United States underwent population contractions during the last glacial period and diverged from southern populations at least 50 thousand years ago. Genome scans of selection provide strong evidence of local adaptation at genes responding to host defences, blood-feeding and environmental variation. In addition, we explore the potential of low coverage genome sequencing of whole-tick samples for documenting the diversity of microbial pathogens and recover important tick-borne pathogens such as Borrelia burgdorferi. The combination of isolation by distance and local adaptation in blacklegged ticks demonstrates that gene flow, including recent expansion, is limited to geographical scales of a few hundred kilometres.

2.
PLoS Biol ; 19(1): e3001066, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33507921

RESUMO

Lyme disease is common in the northeastern United States, but rare in the southeast, even though the tick vector is found in both regions. Infection prevalence of Lyme spirochetes in host-seeking ticks, an important component to the risk of Lyme disease, is also high in the northeast and northern midwest, but declines sharply in the south. As ticks must acquire Lyme spirochetes from infected vertebrate hosts, the role of wildlife species composition on Lyme disease risk has been a topic of lively academic discussion. We compared tick-vertebrate host interactions using standardized sampling methods among 8 sites scattered throughout the eastern US. Geographical trends in diversity of tick hosts are gradual and do not match the sharp decline in prevalence at southern sites, but tick-host associations show a clear shift from mammals in the north to reptiles in the south. Tick infection prevalence declines north to south largely because of high tick infestation of efficient spirochete reservoir hosts (rodents and shrews) in the north but not in the south. Minimal infestation of small mammals in the south results from strong selective attachment to lizards such as skinks (which are inefficient reservoirs for Lyme spirochetes) in the southern states. Selective host choice, along with latitudinal differences in tick host-seeking behavior and variations in tick densities, explains the geographic pattern of Lyme disease in the eastern US.


Assuntos
Vetores de Doenças , Comportamento de Busca por Hospedeiro/fisiologia , Doença de Lyme/epidemiologia , Animais , Animais Selvagens , Borrelia burgdorferi/fisiologia , Clima , Reservatórios de Doenças/microbiologia , Reservatórios de Doenças/estatística & dados numéricos , Vetores de Doenças/classificação , Geografia , Especificidade de Hospedeiro/fisiologia , Humanos , Lagartos/microbiologia , Doença de Lyme/transmissão , Camundongos , Densidade Demográfica , Prevalência , Ratos , Sciuridae/microbiologia , Musaranhos/microbiologia , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/microbiologia , Infestações por Carrapato/transmissão , Carrapatos/microbiologia , Estados Unidos/epidemiologia
4.
Mol Ecol ; 32(12): 3133-3149, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36912202

RESUMO

The blacklegged tick (Ixodes scapularis (Journal of the Academy of Natural Sciences of Philadelphia, 1821, 2, 59)) is a vector of Borrelia burgdorferi sensu stricto (s.s.) (International Journal of Systematic Bacteriology, 1984, 34, 496), the causative bacterial agent of Lyme disease, part of a slow-moving epidemic of Lyme borreliosis spreading across the northern hemisphere. Well-known geographical differences in the vectorial capacity of these ticks are associated with genetic variation. Despite the need for detailed genetic information in this disease system, previous phylogeographical studies of these ticks have been restricted to relatively few populations or few genetic loci. Here we present the most comprehensive phylogeographical study of genome-wide markers in I. scapularis, conducted by using 3RAD (triple-enzyme restriction-site associated sequencing) and surveying 353 ticks from 33 counties throughout the species' range. We found limited genetic variation among populations from the Northeast and Upper Midwest, where Lyme disease is most common, and higher genetic variation among populations from the South. We identify five spatially associated genetic clusters of I. scapularis. In regions where Lyme disease is increasing in frequency, the I. scapularis populations genetically group with ticks from historically highly Lyme-endemic regions. Finally, we identify 10 variable DNA sites that contribute the most to population differentiation. These variable sites cluster on one of the chromosome-scale scaffolds for I. scapularis and are within identified genes. Our findings illuminate the need for additional research to identify loci causing variation in the vectorial capacity of I. scapularis and where additional tick sampling would be most valuable to further understand disease trends caused by pathogens transmitted by I. scapularis.


Assuntos
Borrelia burgdorferi , Ixodes , Doença de Lyme , Animais , Ixodes/genética , Ixodes/microbiologia , Filogeografia , Doença de Lyme/genética , Doença de Lyme/microbiologia , Borrelia burgdorferi/genética , Bactérias
5.
Proc Biol Sci ; 287(1941): 20202278, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33352074

RESUMO

Lyme disease, the most prevalent vector-borne disease in North America, is increasing in incidence and geographic distribution as the tick vector, Ixodes scapularis, spreads to new regions. We re-construct the spatial-temporal invasion of the tick and human disease in the Midwestern US, a major focus of Lyme disease transmission, from 1967 to 2018, to analyse the influence of spatial factors on the geographic spread. A regression model indicates that three spatial factors-proximity to a previously invaded county, forest cover and adjacency to a river-collectively predict tick occurrence. Validation of the predictive capability of this model correctly predicts counties invaded or uninvaded with 90.6% and 98.5% accuracy, respectively. Reported incidence increases in counties after the first report of the tick; based on this modelled relationship, we identify 31 counties where we suspect I. scapularis already occurs yet remains undetected. Finally, we apply the model to forecast tick establishment by 2021 and predict 42 additional counties where I. scapularis will probably be detected based upon historical drivers of geographic spread. Our findings leverage resources dedicated to tick and human disease reporting and provide the opportunity to take proactive steps (e.g. educational efforts) to prevent and limit transmission in areas of future geographic spread.


Assuntos
Ixodes , Doença de Lyme/epidemiologia , Animais , Florestas , Humanos , Incidência , América do Norte/epidemiologia
6.
Emerg Infect Dis ; 22(2): 316-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26811985

RESUMO

We compared the prevalence of Borrelia miyamotoi infection in questing and deer-associated adult Ixodes scapularis ticks in Wisconsin, USA. Prevalence among deer-associated ticks (4.5% overall, 7.1% in females) was significantly higher than among questing ticks (1.0% overall, 0.6% in females). Deer may be a sylvatic reservoir for this newly recognized zoonotic pathogen.


Assuntos
Borrelia/classificação , Cervos/parasitologia , Ixodes/microbiologia , Animais , Borrelia/genética , DNA Intergênico , Feminino , Masculino , RNA Ribossômico 16S/genética , Infestações por Carrapato , Wisconsin
7.
J Med Entomol ; 50(1): 163-70, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23427666

RESUMO

Anaplasma phagocytophilum (Dumler et al.) is the bacterial agent of human granulocytic anaplasmosis, an emerging infectious disease. The main vector of A. phagocytophilum in the United States is the blacklegged tick (Ixodes scapularis (Say)) and various small and medium-sized mammals are reservoirs. Previous studies indicate that birds are exposed to A. phagocytophilum; however, because no studies have directly investigated avian susceptibility, reservoir competence, and morbidity for A. phagocytophilum, uncertainty remains as to what role birds could play in its transmission ecology. In a controlled laboratory study, we tested whether two species, the American robin (Turdus migratorius (L.)) and the gray catbird (Dumetella carolinensis (L.)), can become infected with and then transmit A. phagocytophilum to feeding ticks, and whether exposed birds develop disease. Wild caught, seronegative birds (n = 10 per species) were exposed to A. phagocytophilum-infected I. scapularis nymphs (day 0). Transmission was assessed by xenodiagnosis on days 7, 14, 42, and 77; blood was assayed for bacteremia and serology. A. phagocytophilum was detected using quantitative polymerase chain reaction targeting the 16s rRNA gene. One robin infected 2 of 13 larval ticks (15%) on day 7; no other birds were found to infect feeding ticks at any time. Birds did not develop bacteremia, specific antibodies or significant illness because of exposure. Mouse controls became bacteremic, infected feeding ticks, and seroconverted. Our results suggest that these two avian species are unlikely to play a significant role in the maintenance of the agent of human granulocytic anaplasmosis and that avian serosurveys may not be a reliable indicator of A. phagocytophilum exposure.


Assuntos
Anaplasma phagocytophilum/fisiologia , Doenças das Aves/transmissão , Ehrlichiose/veterinária , Interações Hospedeiro-Patógeno , Aves Canoras/microbiologia , Animais , Bacteriemia/microbiologia , Bacteriemia/transmissão , Bacteriemia/veterinária , Doenças das Aves/microbiologia , Reservatórios de Doenças , Ehrlichiose/microbiologia , Ehrlichiose/transmissão , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Aves Canoras/imunologia , Xenodiagnóstico
8.
Ticks Tick Borne Dis ; 14(4): 102163, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37001417

RESUMO

Research initiatives that engage the public (i.e., community science or citizen science) increasingly provide insights into tick exposures in the United States. However, these data have important caveats, particularly with respect to reported travel history and tick identification. Here, we assessed whether a smartphone application, The Tick App, provides reliable and novel insights into tick exposures across three domains - travel history, broad spatial and temporal patterns of species-specific encounters, and tick identification. During 2019-2021, we received 11,424 tick encounter submissions from across the United States, with nearly all generated in the Midwest and Northeast regions. Encounters were predominantly with human hosts (71%); although one-fourth of ticks were found on animals. Half of the encounters (51%) consisted of self-reported peri­domestic exposures, while 37% consisted of self-reported recreational exposures. Using phone-based location services, we detected differences in travel history outside of the users' county of residence along an urbanicity gradient. Approximately 75% of users from large metropolitan and rural counties had travel out-of-county in the four days prior to tick detection, whereas an estimated 50-60% of users from smaller metropolitan areas did. Furthermore, we generated tick encounter maps for Dermacentor variabilis and Ixodes scapularis that partially accounted for travel history and overall mirrored previously published species distributions. Finally, we evaluated whether a streamlined three-question sequence (on tick size, feeding status, and color) would inform a simple algorithm to optimize image-based tick identification. Visual aides of tick coloration and size engaged and guided users towards species and life stage classification moderately well, with 56% of one-time submitters correctly selecting photos of D. variabilis adults and 76% of frequent-submitters correctly selecting photos of D. variabilis adults. Together, these results indicate the importance of bolstering the use of smartphone applications to engage community scientists and complement other active and passive tick surveillance systems.


Assuntos
Ixodes , Aplicativos Móveis , Picadas de Carrapatos , Animais , Adulto , Estados Unidos/epidemiologia , Humanos , Smartphone
9.
Appl Environ Microbiol ; 78(17): 6059-67, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22729536

RESUMO

Understanding the spread of infectious diseases is crucial for implementing effective control measures. For this, it is important to obtain information on the contemporary population structure of a disease agent and to infer the evolutionary processes that may have shaped it. Here, we investigate on a continental scale the population structure of Borrelia burgdorferi, the causative agent of Lyme borreliosis (LB), a tick-borne disease, in North America. We test the hypothesis that the observed population structure is congruent with recent population expansions and that these were preceded by bottlenecks mostly likely caused by the near extirpation in the 1900s of hosts required for sustaining tick populations. Multilocus sequence typing and complementary population analytical tools were used to evaluate B. burgdorferi samples collected in the Northeastern, Upper Midwestern, and Far-Western United States and Canada. The spatial distribution of sequence types (STs) and inferred population boundaries suggest that the current populations are geographically separated. One major population boundary separated western B. burgdorferi populations transmitted by Ixodes pacificus in California from Eastern populations transmitted by I. scapularis; the other divided Midwestern and Northeastern populations. However, populations from all three regions were genetically closely related. Together, our findings suggest that although the contemporary populations of North American B. burgdorferi now comprise three geographically separated subpopulations with no or limited gene flow among them, they arose from a common ancestral population. A comparative analysis of the B. burgdorferi outer surface protein C (ospC) gene revealed novel linkages and provides additional insights into the genetic characteristics of strains.


Assuntos
Borrelia burgdorferi/classificação , Borrelia burgdorferi/genética , Variação Genética , Doença de Lyme/epidemiologia , Doença de Lyme/microbiologia , Filogeografia , Animais , Borrelia burgdorferi/isolamento & purificação , Canadá/epidemiologia , Evolução Molecular , Ixodes/microbiologia , Epidemiologia Molecular , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Estados Unidos/epidemiologia
10.
J Med Entomol ; 59(1): 267-272, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34718657

RESUMO

Questing behavior and host associations of immature blacklegged ticks, Ixodes scapularis Say, from the southeastern United States are known to differ from those in the north. To elucidate these relationships we describe host associations of larval and nymphal I. scapularis from 8 lizard species sampled from 5 sites in the southeastern U.S. Larvae and nymphs attached in greater numbers to larger lizards than to smaller lizards, with differential levels of attachment to different lizard species. Blacklegged ticks are generally attached to skinks of the genus Plestiodon in greater numbers per unit lizard weight than to anoles (Anolis) or fence lizards (Sceloporus). The broad-headed skink, Plestiodon laticeps (Schneider), was a particularly important host for immature I. scapularis in our study and in several previous studies of tick-host associations in the southeast. Blacklegged ticks show selective attachment to Plestiodon lizard hosts in the southeast, but whether this results from behavioral host preferences or from ecological factors such as timing or microhabitat distributions of tick questing and host activity remains to be determined.


Assuntos
Ixodes , Lagartos/parasitologia , Animais , Vetores Artrópodes/classificação , Biodiversidade , Ecossistema , Interações Hospedeiro-Parasita , Larva , Ninfa , Densidade Demográfica , Estações do Ano , Sudeste dos Estados Unidos , Especificidade da Espécie , Infestações por Carrapato
11.
Ticks Tick Borne Dis ; 13(2): 101886, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34929604

RESUMO

The geographic range of the blacklegged tick, Ixodes scapularis, and its associated human pathogens have expanded substantially over the past 20 years putting an increasing number of persons at risk for tick-borne diseases, particularly in the upper midwestern and northeastern United States. Prevention and diagnosis of tick-borne diseases rely on an accurate understanding by the public and health care providers of when and where persons may be exposed to infected ticks. While tracking changes in the distribution of ticks and tick-borne pathogens provides fundamental information on risk for tick-borne diseases, metrics that incorporate prevalence of infection in ticks better characterize acarological risk. However, assessments of infection prevalence are more labor intensive and costly than simple measurements of tick or pathogen presence. Our objective was to examine whether data derived from repeated sampling at longitudinal sites substantially influences public health recommendations for Lyme disease and anaplasmosis prevention, or if more constrained sampling is sufficient. Here, we summarize inter-annual variability in prevalence of the agents of Lyme disease (Borrelia burgdorferi s.s.) and anaplasmosis (Anaplasma phagocytophilum) in host-seeking I. scapularis nymphs and adults at 28 longitudinal sampling sites in the Upper Midwestern US (Michigan, Minnesota, and Wisconsin). Infection prevalence was highly variable among sites and among years within sites. We conclude that monitoring infection prevalence in ticks aids in describing coarse acarological risk trends, but setting a fixed prevalence threshold for prevention or diagnostic decisions is not feasible given the observed variability and lack of temporal trends. Reducing repeated sampling of the same sites had minimal impact on regional (Upper Midwest) estimates of average infection prevalence; this information should be useful in allocating scarce public health resources for tick and tick-borne pathogen surveillance, prevention, and control activities.


Assuntos
Anaplasma phagocytophilum , Babesia microti , Borrelia burgdorferi , Ixodes , Ixodidae , Animais , Humanos , Prevalência , Prática de Saúde Pública
12.
Ticks Tick Borne Dis ; 13(3): 101925, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35255349

RESUMO

Lyme disease and other tick-borne diseases are a major public health threat in the Upper Midwestern United States, including Michigan, Minnesota, and Wisconsin. To prevent tick bites and tick-borne diseases, public health officials commonly recommend personal protective measures and property management techniques. Adoption of tick-borne disease prevention behaviors and practices by individuals are, however, highly variable. We aimed to characterize current tick-borne disease knowledge, attitudes, and prevention behaviors (KAB) practiced by the public in these states, as well as their willingness to use specific tick control methods. We conducted a population-based survey in summer 2019 in 48 high-risk counties (those having a five-year average (2013-2017) Lyme disease incidence of ≥ 10 cases per 100,000 persons per year), in Michigan, Minnesota, and Wisconsin. A total of 2713 surveys were analyzed; survey weights were used to account for household selection probability and post-stratified to match county-level joint age and sex population distributions in population-level inference. An estimated 98% of the population had heard of Lyme disease, with most perceiving it as very or extremely serious (91%); however, only an estimated 25% perceived tick-borne diseases as very or extremely common in their community. Among those who spent time in places with ticks from April through October, an estimated 68% check themselves thoroughly for ticks most of the time or always and 43% use bug repellent on skin or clothing most of the time or always. An estimated 13% of the population had ever treated their property with a pesticide to kill ticks, and 3% had ever used devices that apply pesticide to rodents to kill ticks on their property. Willingness to practice tick bite prevention behaviors, however, was estimated to be much higher; with 82% being willing to perform tick checks at least once a day, and more than 60% willing to use bug repellent, tick control products on pets, or to bathe within two hours of being outdoors. We found that residents would likely be willing to support a county-wide tick control program to reduce the risk of tick-borne disease in their community (81%) or to apply tick control products to their property to reduce the risk of tick-borne disease in their household (79%). Tick checks were more likely to be practiced among participants who perceived tick-borne diseases to be highly prevalent in their community, if they or a household member had been previously diagnosed with a tick-borne disease?, or if they perceived tick exposure to be likely around their home, cabin, or vacation home. In addition, property-based tick control methods were associated with perceived risk of encountering ticks around the home, cabin, or vacation home. Participants who had seen information from state health departments were also more likely to practice preventive measures. The most common reported barriers to using any of these methods were forgetfulness, safety concerns, and lack of awareness. Our survey findings shed light on how residents from these Upper Midwest states may adopt tick control and tick bite prevention measures and how public health outreach may be most effective for this population.


Assuntos
Doença de Lyme , Picadas de Carrapatos , Doenças Transmitidas por Carrapatos , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Doença de Lyme/epidemiologia , Doença de Lyme/prevenção & controle , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/prevenção & controle , Estados Unidos/epidemiologia , Wisconsin/epidemiologia
13.
Appl Environ Microbiol ; 77(6): 1999-2007, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21257811

RESUMO

The blacklegged tick Ixodes scapularis is the primary vector of the most prevalent vector-borne zoonosis in North America, Lyme disease (LD). Enzootic maintenance of the pathogen Borrelia burgdorferi by I. scapularis and small mammals is well documented, whereas its "cryptic" maintenance by other specialist ticks and wildlife hosts remains largely unexplored because these ticks rarely bite humans. We quantified B. burgdorferi infection in a cryptic bird-rabbit-tick cycle. Furthermore, we explored the role of birds in maintaining and moving B. burgdorferi strains by comparing their genetic diversity in this cryptic cycle to that found in cycles vectored by I. scapularis. We examined birds, rabbits, and small mammals for ticks and infection over a 4-year period at a focal site in Michigan, 90 km east of a zone of I. scapularis invasion. We mist netted 19,631 birds that yielded 12,301 ticks, of which 86% were I. dentatus, a bird-rabbit specialist. No resident wildlife harbored I. scapularis, and yet 3.5% of bird-derived ticks, 3.6% of rabbit-derived ticks, and 20% of rabbit ear biopsy specimens were infected with B. burgdorferi. We identified 25 closely related B. burgdorferi strains using an rRNA gene intergenic spacer marker, the majority (68%) of which had not been reported previously. The presence of strains common to both cryptic and endemic cycles strongly implies bird-mediated dispersal. Given continued large-scale expansion of I. scapularis populations, we predict that its invasion into zones of cryptic transmission will allow for bridging of novel pathogen strains to humans and animals.


Assuntos
Aves/parasitologia , Borrelia burgdorferi/genética , Borrelia burgdorferi/isolamento & purificação , Ixodes/microbiologia , Animais , Borrelia burgdorferi/classificação , Ixodes/crescimento & desenvolvimento , RNA Ribossômico/genética , Coelhos
14.
J Med Entomol ; 58(4): 1565-1587, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-33885784

RESUMO

Wildlife vertebrate hosts are integral to enzootic cycles of tick-borne pathogens, and in some cases have played key roles in the recent rise of ticks and tick-borne diseases in North America. In this forum article, we highlight roles that wildlife hosts play in the maintenance and transmission of zoonotic, companion animal, livestock, and wildlife tick-borne pathogens. We begin by illustrating how wildlife contribute directly and indirectly to the increase and geographic expansion of ticks and their associated pathogens. Wildlife provide blood meals for tick growth and reproduction; serve as pathogen reservoirs; and can disperse ticks and pathogens-either through natural movement (e.g., avian migration) or through human-facilitated movement (e.g., wildlife translocations and trade). We then discuss opportunities to manage tick-borne disease through actions directed at wildlife hosts. To conclude, we highlight key gaps in our understanding of the ecology of tick-host interactions, emphasizing that wildlife host communities are themselves a very dynamic component of tick-pathogen-host systems and therefore complicate management of tick-borne diseases, and should be taken into account when considering host-targeted approaches. Effective management of wildlife to reduce tick-borne disease risk further requires consideration of the 'human dimensions' of wildlife management. This includes understanding the public's diverse views and values about wildlife and wildlife impacts-including the perceived role of wildlife in fostering tick-borne diseases. Public health agencies should capitalize on the expertise of wildlife agencies when developing strategies to reduce tick-borne disease risks.


Assuntos
Animais Selvagens/parasitologia , Vetores Aracnídeos , Interações Hospedeiro-Parasita , Doenças Transmitidas por Carrapatos/transmissão , Carrapatos , Migração Animal , Animais , Humanos , América do Norte , Animais de Estimação/parasitologia , Controle de Ácaros e Carrapatos
15.
J Med Entomol ; 58(4): 1536-1545, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-33112403

RESUMO

The global climate has been changing over the last century due to greenhouse gas emissions and will continue to change over this century, accelerating without effective global efforts to reduce emissions. Ticks and tick-borne diseases (TTBDs) are inherently climate-sensitive due to the sensitivity of tick lifecycles to climate. Key direct climate and weather sensitivities include survival of individual ticks, and the duration of development and host-seeking activity of ticks. These sensitivities mean that in some regions a warming climate may increase tick survival, shorten life-cycles and lengthen the duration of tick activity seasons. Indirect effects of climate change on host communities may, with changes in tick abundance, facilitate enhanced transmission of tick-borne pathogens. High temperatures, and extreme weather events (heat, cold, and flooding) are anticipated with climate change, and these may reduce tick survival and pathogen transmission in some locations. Studies of the possible effects of climate change on TTBDs to date generally project poleward range expansion of geographical ranges (with possible contraction of ranges away from the increasingly hot tropics), upslope elevational range spread in mountainous regions, and increased abundance of ticks in many current endemic regions. However, relatively few studies, using long-term (multi-decade) observations, provide evidence of recent range changes of tick populations that could be attributed to recent climate change. Further integrated 'One Health' observational and modeling studies are needed to detect changes in TTBD occurrence, attribute them to climate change, and to develop predictive models of public- and animal-health needs to plan for TTBD emergence.


Assuntos
Distribuição Animal , Vetores Aracnídeos/microbiologia , Mudança Climática , Doenças Transmitidas por Carrapatos/transmissão , Carrapatos/microbiologia , Altitude , Animais , Clima , Humanos , Densidade Demográfica , Tempo (Meteorologia)
16.
Ticks Tick Borne Dis ; 12(5): 101761, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34167044

RESUMO

Deer management (e.g., reduction) has been proposed as a tool to reduce the acarological risk of Lyme disease. There have been few opportunities to investigate Ixodes scapularis (blacklegged tick) and Borrelia burgdorferi sensu stricto dynamics in the absence of white-tailed deer (Odocoileus virginianus) in midwestern North America. A pair of islands in Lake Michigan presented a unique opportunity to study the role of alternative hosts for the adult stage of the blacklegged tick for maintaining a tick population as a deer herd exists on North Manitou Island but not on South Manitou Island, where coyotes (Canis latrans) and hares (Lepus americanus) are the dominant medium mammals. Additionally, we were able to investigate the maintenance of I. scapularis and B. burgdorferi in small mammal communities on both islands, which were dominated by eastern chipmunks (Tamias striatus). From 2011 to 2015, we surveyed both islands for blacklegged ticks by drag cloth sampling, bird mist netting, and small and medium-sized mammal trapping. We assayed questing ticks, on-host ticks, and mammal biopsies for the Lyme disease pathogen, B. burgdorferi. We detected all three life stages of the blacklegged tick on both islands. Of the medium mammals sampled, no snowshoe hares (Lepus americanus, 0/23) were parasitized by adult blacklegged ticks, but 2/2 coyotes (Canis latrans) sampled on South Manitou Island in 2014 were parasitized by adult blacklegged ticks, suggesting that coyotes played a role in maintaining the tick population in the absence of deer. We also detected I. scapularis ticks on passerine birds from both islands, providing support that birds contribute to maintaining as well as introducing blacklegged ticks and B. burgdorferi to the islands. We observed higher questing adult and nymphal tick densities, and higher B. burgdorferi infection prevalence in small mammals and in adult ticks on the island with deer as compared to the deer-free island. On the islands, we also found that 25% more chipmunks were tick-infested than mice, fed more larvae and nymphs relative to their proportional abundance compared to mice, and thus may play a larger role compared to mice in the maintenance of B. burgdorferi. Our investigation demonstrated that alternative hosts could maintain a local population of blacklegged ticks and an enzootic cycle of the Lyme disease bacterium in the absence of white-tailed deer. Thus, alternative adult blacklegged tick hosts should be considered when investigating deer-targeted management tools for reducing tick-borne disease risk, especially when the alternative host community may be abundant and diverse.


Assuntos
Borrelia burgdorferi , Coiotes/microbiologia , Ixodes/microbiologia , Sciuridae/microbiologia , Animais , Zoonoses Bacterianas , Aves/microbiologia , Cervos/microbiologia , Reservatórios de Doenças , Especificidade de Hospedeiro , Ilhas , Lagos , Estágios do Ciclo de Vida , Doença de Lyme/transmissão , Mamíferos/microbiologia , Infestações por Carrapato/veterinária , Estados Unidos
17.
Ticks Tick Borne Dis ; 12(1): 101556, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33035757

RESUMO

Measures of acarological risk of exposure to Ixodes scapularis-borne disease agents typically focus on nymphs; however, the relapsing fever group spirochete Borrelia miyamotoi can be passed transovarially, and I. scapularis larvae are capable of transmitting B. miyamotoi to their hosts. To quantify the larval contribution to acarological risk, relative to nymphs and adults, we collected questing I. scapularis for 3 yr at Fort McCoy, Wisconsin (WI, n = 23,367 ticks), and Cape Cod, Massachusetts (MA, n = 4190) in the United States. Borrelia miyamotoi infection prevalence was estimated for I. scapularis larvae, nymphs, females, and males, respectively, as 0.88, 2.05, 0.63, and 1.22 % from the WI site and 0.33, 2.32, 2.83, and 2.11 % from the MA site. Densities of B. miyamotoi-infected ticks (DIT, per 1000 m2) were estimated for larvae, nymphs, females, and males, respectively, as 0.36, 0.14, 0.01, and 0.03 from the WI site and 0.05, 0.06, 0.03, and 0.02 from the MA site. Thus, although larval infection prevalence with B. miyamotoi was significantly lower than that of nymphs and similar to that of adults, because of their higher abundance, the larval contribution to the overall DIT was similar to that of nymphs and trended towards a greater contribution than adults. Assuming homogenous contact rates with humans, these results suggest that eco-epidemiological investigations of B. miyamotoi disease in North America should include larvae. A fuller appreciation of the epidemiological implications of these results, therefore, requires an examination of the heterogeneity in contact rates with humans among life stages.


Assuntos
Borrelia/isolamento & purificação , Ixodes/fisiologia , Febre Recorrente/epidemiologia , Animais , Feminino , Humanos , Ixodes/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Massachusetts/epidemiologia , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Febre Recorrente/microbiologia , Estações do Ano , Wisconsin/epidemiologia
18.
Ticks Tick Borne Dis ; 11(6): 101515, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32993935

RESUMO

The dynamics of zoonotic vector-borne diseases are determined by a complex set of parameters including human behavior that may vary with socio-ecological contexts. Lyme disease is the most common vector-borne disease in the United States. The Northeast and upper Midwest are the regions most affected - two areas with differing levels of urbanization and differing sociocultural settings. The probability of being infected with Lyme disease is related to the risk of encounters with Ixodes scapularis ticks infected with Borrelia burgdorferi sensu lato, which reflects both the environmental tick hazard and human behaviors. Herein, we compare behavioral and peridomestic risk factors perceived to influence the risk for human-tick encounters between two high-incidence states in the Northeast (New York and New Jersey) and one high-incidence state in the Midwest (Wisconsin). We used a smartphone application, The Tick App, as a novel survey tool, during spring and summer of 2018. Adaptive human behavior was identified in the relationship between outdoor activities and the use of methods to prevent tick bites. More frequent recreational outdoor activities and gardening (a peridomestic activity) were associated with a 1.4-2.3 times increased likelihood of using personal protective measures to prevent tick bites, when accounting for demographics and previous Lyme diagnosis. Most outdoor activities were more frequently reported by participants from the Midwest (n = 697), representing an older demographic, than the Northeast (n = 396). Participants from the Northeast were less likely to report use of personal protective measures to prevent tick bites, but a larger proportion of participants from the Northeast reported application of environmental pesticides targeting ticks or mosquitoes or other insects on their property (34 % of 279 versus 22 % of 616 participants) and interventions to reduce the presence of peridomestic deer compared to participants from the Midwest (e.g. 20 % of 278 versus 7% of 615 participants reported having a deer proof fence). Participants from the Midwest were more likely to kill rodents on their property (28 % versus 13 %). These differences illustrate the need for further assessment of personal behavior and tick exposure in these two Lyme disease-endemic regions to aid in targeted public health messaging to reduce tick-borne diseases.


Assuntos
Atividades Humanas/estatística & dados numéricos , Doença de Lyme/epidemiologia , Características de Residência/estatística & dados numéricos , Fatores de Risco , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , New Jersey/epidemiologia , New York/epidemiologia , Wisconsin/epidemiologia , Adulto Jovem
19.
Ticks Tick Borne Dis ; 11(1): 101271, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31677969

RESUMO

Ixodes scapularis is the primary vector of Lyme disease spirochetes in eastern and central North America, and local densities of this tick can affect human disease risk. We sampled larvae and nymphs from sites in Massachusetts and Wisconsin, USA, using flag/drag devices and by collecting ticks from hosts, and measured environmental variables to evaluate the environmental factors that affect local distribution and abundance of I. scapularis. Our sites were all forested areas with known I. scapularis populations. Environmental variables included those associated with weather (e.g., temperature and relative humidity), vegetation characteristics (at canopy, shrub, and ground levels), and host abundance (small and medium-sized mammals and reptiles). The numbers of larvae on animals at a given site and season showed a logarithmic relationship to the numbers in flag/drag samples, suggesting limitation in the numbers on host animals. The numbers of nymphs on animals showed no relationship to the numbers in flag/drag samples. These results suggest that only a small proportion of larvae and nymphs found hosts because in neither stage did the numbers of host-seeking ticks decline with increased numbers on hosts. Canopy cover was predictive of larval and nymphal numbers in flag/drag samples, but not of numbers on hosts. Numbers of small and medium-sized mammal hosts the previous year were generally not predictive of the current year's tick numbers, except that mouse abundance predicted log numbers of nymphs on all hosts the following year. Some measures of larval abundance were predictive of nymphal numbers the following year. The mean number of larvae per mouse was well predicted by measures of overall larval abundance (based on flag/drag samples and samples from all hosts), and some environmental factors contributed significantly to the model. In contrast, the mean numbers of nymphs per mouse were not well predicted by environmental variables, only by overall nymphal abundance on hosts. Therefore, larvae respond differently than nymphs to environmental factors. Furthermore, flag/drag samples provide different information about nymphal numbers than do samples from hosts. Flag/drag samples can provide information about human risk of acquiring nymph-borne pathogens because they provide information on the densities of ticks that might encounter humans, but to understand the epizootiology of tick-borne agents both flag/drag and host infestation data are needed.


Assuntos
Florestas , Interações Hospedeiro-Parasita , Umidade , Ixodes/fisiologia , Peromyscus/parasitologia , Animais , Ixodes/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Massachusetts , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Dinâmica Populacional , Wisconsin
20.
Ecol Appl ; 19(3): 747-60, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19425436

RESUMO

Little is known about the interaction between fish pathogens and managed freshwater fish populations. We develop a model of chinook salmon (Oncorhynchus tschawytscha)-Renibacterium salmoninarum (Rs) dynamics based on free-swimming Lake Michigan fish by synthesizing population and epidemiological theory. Using the model, we expose critical uncertainties about the system, identify opportunities for efficient and insightful data collection, and pose testable hypotheses. Our simulation results suggest that hatcheries potentially play an important role in Lake Michigan Rs dynamics, and understanding vertical transmission will be critical for quantifying this role. Our results also show that disease-mediated responses to chinook salmon density need to be considered when evaluating management actions. Related to this, a better understanding of the stock-recruitment relationship and natural mortality rates for wild-spawned fish and the impact of hatchery stocking on recruitment is required. Finally, to further develop models capable of assisting fishery management, fish health surveys ought to be integrated with stock assessment. This is the first time a host-pathogen modeling framework has been applied to managed, freshwater ecosystems, and we suggest that such an approach should be used more frequently to inform other emerging and chronic fish health issues.


Assuntos
Infecções por Actinomycetales/veterinária , Doenças dos Peixes/microbiologia , Água Doce/microbiologia , Micrococcaceae/fisiologia , Modelos Biológicos , Salmão/microbiologia , Infecções por Actinomycetales/epidemiologia , Infecções por Actinomycetales/microbiologia , Animais , Simulação por Computador , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/mortalidade , Pesqueiros/métodos , Great Lakes Region , Densidade Demográfica , Dinâmica Populacional , Prevalência , Salmão/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA