Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(32): 8568-8573, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28739955

RESUMO

Endogenous electric fields (EFs) are involved in developmental regulation and wound healing. Although the phenomenon is known for more than a century, it is not clear how cells perceive the external EF. Membrane proteins, responding to electrophoretic and electroosmotic forces, have long been proposed as the sensing molecules. However, specific charge modification of surface proteins did not change cell migration motility nor directionality in EFs. Moreover, symmetric alternating current (AC) EF directs cell migration in a frequency-dependent manner. Due to their charge and ability to coalesce, glycolipids are therefore the likely primary EF sensor driving polarization of membrane proteins and intracellular signaling. We demonstrate that detergent-resistant membrane nanodomains, also known as lipid rafts, are the primary response element in EF sensing. The clustering and activation of caveolin and signaling proteins further stabilize raft structure and feed-forward downstream signaling events, such as rho and PI3K activation. Theoretical modeling supports the experimental results and predicts AC frequency-dependent cell and raft migration. Our results establish a fundamental mechanism for cell electrosensing and provide a role in lipid raft mechanotransduction.


Assuntos
Mecanotransdução Celular/fisiologia , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/fisiologia , Animais , Caveolina 1/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Eletricidade , Humanos , Integrinas/metabolismo , Transdução de Sinais , Suínos , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA