RESUMO
How the sequence of a response element affects the binding of a transcription factor and, ultimately, the differential rate of transcription of genes under its control is not well-understood. In the case of the p73 transcription factor, it binds to >200 response elements to trigger developmental, cell arrest, and apoptotic pathways. The p73 response elements match the 20 bp consensus sequence of the p53 response elements that are formed by two 10 bp half-sites, where each half-site is an inverted repeat of two 5 bp quarter-sites. Using sedimentation velocity and fluorescence anisotropy experiments, we studied how systematic variations in the sequence of a half-site response element modify the DNA binding affinity of the p73 DNA-binding domain. We observed that each nucleotide position in the response element has a different influence in determining the binding of the p73 DNA-binding domain. The cytosine in the fourth position of each quarter-site is the largest determinant of DNA binding, followed by the nucleotide in the fifth position, and last, the first three positions show a slight regulatory preference for purines. Together with previous structural and functional results, our data suggest a hierarchical model of binding in which some nucleotide positions in the response element are more important than others in determining the binding of the transcription factor.
Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas Nucleares/metabolismo , Elementos de Resposta , Proteínas Supressoras de Tumor/metabolismo , Sequência de Bases , Sítios de Ligação , DNA/química , Proteínas de Ligação a DNA/química , Humanos , Proteínas Nucleares/química , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Proteína Tumoral p73 , Proteínas Supressoras de Tumor/químicaRESUMO
The transcription factor p73 triggers developmental pathways and overlaps stress-induced p53 transcriptional pathways. How p53-family response elements determine and regulate transcriptional specificity remains an unsolved problem. In this work, we have determined the first crystal structures of p73 DNA-binding domain tetramer bound to response elements with spacers of different length. The structure and function of the adaptable tetramer are determined by the distance between two half-sites. The structures with zero and one base-pair spacers show compact p73 DNA-binding domain tetramers with large tetramerization interfaces; a two base-pair spacer results in DNA unwinding and a smaller tetramerization interface, whereas a four base-pair spacer hinders tetramerization. Functionally, p73 is more sensitive to spacer length than p53, with one base-pair spacer reducing 90% of transactivation activity and longer spacers reducing transactivation to basal levels. Our results establish the quaternary structure of the p73 DNA-binding domain required as a scaffold to promote transactivation.