Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Bacteriol ; 205(7): e0008023, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37310227

RESUMO

The biofilm matrix is composed of exopolysaccharides, eDNA, membrane vesicles, and proteins. While proteomic analyses have identified numerous matrix proteins, their functions in the biofilm remain understudied compared to the other biofilm components. In the Pseudomonas aeruginosa biofilm, several studies have identified OprF as an abundant matrix protein and, more specifically, as a component of biofilm membrane vesicles. OprF is a major outer membrane porin of P. aeruginosa cells. However, current data describing the effects of OprF in the P. aeruginosa biofilm are limited. Here, we identify a nutrient-dependent effect of OprF in static biofilms, whereby ΔoprF cells form significantly less biofilm than wild type when grown in media containing glucose or low sodium chloride concentrations. Interestingly, this biofilm defect occurs during late static biofilm formation and is not dependent on the production of PQS, which is responsible for outer membrane vesicle production. Furthermore, while biofilms lacking OprF contain approximately 60% less total biomass than those of wild type, the number of cells in these two biofilms is equivalent. We demonstrate that P. aeruginosa ΔoprF biofilms with reduced biofilm biomass contain less eDNA than wild-type biofilms. These results suggest that the nutrient-dependent effect of OprF is involved in the maintenance of P. aeruginosa biofilms by retaining eDNA in the matrix. IMPORTANCE Many pathogens form biofilms, which are bacterial communities encased in an extracellular matrix that protects them against antibacterial treatments. The roles of several matrix components of the opportunistic pathogen Pseudomonas aeruginosa have been characterized. However, the effects of P. aeruginosa matrix proteins remain understudied and are untapped potential targets for antibiofilm treatments. Here, we describe a conditional effect of the abundant matrix protein OprF on late-stage P. aeruginosa biofilms. A ΔoprF strain formed significantly less biofilm in low sodium chloride or with glucose. Interestingly, the defective ΔoprF biofilms did not exhibit fewer resident cells but contained significantly less extracellular DNA (eDNA) than wild type. These results suggest that OprF is involved in matrix eDNA retention in biofilms.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Pseudomonas aeruginosa , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Pseudomonas aeruginosa/genética , Proteômica , Cloreto de Sódio/metabolismo , Biofilmes , DNA/metabolismo , Nutrientes , Glucose/metabolismo , Proteínas de Bactérias/genética
2.
Mol Microbiol ; 116(2): 550-563, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33905139

RESUMO

During decades-long infections in the cystic fibrosis (CF) airway, Pseudomonas aeruginosa undergoes selection. One bacterial genetic adaptation often observed in CF isolates is mucA mutations. MucA inhibits the sigma factor AlgU. Mutations in mucA lead to AlgU misregulation, resulting in a mucoid phenotype that is associated with poor CF disease outcomes. Due to its ability to be mutated, mucA is assumed to be dispensable for bacterial viability. Here we show that, paradoxically, a portion of mucA is essential in P. aeruginosa. We demonstrate that mucA is no longer required in a strain lacking algU, that mucA alleles encoding for proteins that do not bind to AlgU are insufficient for viability, and that mucA is no longer essential in mutant strains containing AlgU variants with reduced sigma factor activity. Furthermore, we found that overexpression of algU prevents cell growth in the absence of MucA, and that this phenotype can be rescued by the overproduction of RpoD, the housekeeping sigma factor. Together, these results suggest that in the absence of MucA, the inability to regulate AlgU activity results in the loss of bacterial viability. Finally, we speculate that the essentiality of anti-sigma factors that regulate envelope function may be a widespread phenomenon in bacteria.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Fator sigma/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Fibrose Cística/microbiologia , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/genética , Fator sigma/antagonistas & inibidores , Fator sigma/genética
3.
J Bacteriol ; 201(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31010902

RESUMO

The ability of Pseudomonas aeruginosa to form biofilms, which are communities of cells encased in a self-produced extracellular matrix, protects the cells from antibiotics and the host immune response. While some biofilm matrix components, such as exopolysaccharides and extracellular DNA, are relatively well characterized, the extracellular matrix proteins remain understudied. Multiple proteomic analyses of the P. aeruginosa soluble biofilm matrix and outer membrane vesicles, which are a component of the matrix, have identified OprF as an abundant matrix protein. To date, the few reports on the effects of oprF mutations on biofilm formation are conflicting, and little is known about the potential role of OprF in the biofilm matrix. The majority of OprF studies focus on the protein as a cell-associated porin. As a component of the outer membrane, OprF assumes dual conformations and is involved in solute transport, as well as cell envelope integrity. Here, we review the current literature on OprF in P. aeruginosa, discussing how the structure and function of the cell-associated and matrix-associated protein may affect biofilm formation and pathogenesis in order to inform future research on this understudied matrix protein.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Virulência/fisiologia , Animais , Matriz Extracelular/metabolismo , Humanos , Proteômica/métodos
4.
Nature ; 497(7449): 388-391, 2013 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-23657259

RESUMO

Bacterial biofilms are surface-associated, multicellular, morphologically complex microbial communities. Biofilm-forming bacteria such as the opportunistic pathogen Pseudomonas aeruginosa are phenotypically distinct from their free-swimming, planktonic counterparts. Much work has focused on factors affecting surface adhesion, and it is known that P. aeruginosa secretes the Psl exopolysaccharide, which promotes surface attachment by acting as 'molecular glue'. However, how individual surface-attached bacteria self-organize into microcolonies, the first step in communal biofilm organization, is not well understood. Here we identify a new role for Psl in early biofilm development using a massively parallel cell-tracking algorithm to extract the motility history of every cell on a newly colonized surface. By combining this technique with fluorescent Psl staining and computer simulations, we show that P. aeruginosa deposits a trail of Psl as it moves on a surface, which influences the surface motility of subsequent cells that encounter these trails and thus generates positive feedback. Both experiments and simulations indicate that the web of secreted Psl controls the distribution of surface visit frequencies, which can be approximated by a power law. This Pareto-type behaviour indicates that the bacterial community self-organizes in a manner analogous to a capitalist economic system, a 'rich-get-richer' mechanism of Psl accumulation that results in a small number of 'elite' cells becoming extremely enriched in communally produced Psl. Using engineered strains with inducible Psl production, we show that local Psl concentrations determine post-division cell fates and that high local Psl concentrations ultimately allow elite cells to serve as the founding population for initial microcolony development.


Assuntos
Biofilmes/crescimento & desenvolvimento , Polissacarídeos Bacterianos/metabolismo , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Algoritmos , Aderência Bacteriana/fisiologia , Rastreamento de Células , Retroalimentação Fisiológica , Corantes Fluorescentes , Coloração e Rotulagem
5.
Proc Natl Acad Sci U S A ; 112(36): 11353-8, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26311845

RESUMO

Biofilm formation is a complex, ordered process. In the opportunistic pathogen Pseudomonas aeruginosa, Psl and Pel exopolysaccharides and extracellular DNA (eDNA) serve as structural components of the biofilm matrix. Despite intensive study, Pel's chemical structure and spatial localization within mature biofilms remain unknown. Using specialized carbohydrate chemical analyses, we unexpectedly found that Pel is a positively charged exopolysaccharide composed of partially acetylated 1→4 glycosidic linkages of N-acetylgalactosamine and N-acetylglucosamine. Guided by the knowledge of Pel's sugar composition, we developed a tool for the direct visualization of Pel in biofilms by combining Pel-specific Wisteria floribunda lectin staining with confocal microscopy. The results indicate that Pel cross-links eDNA in the biofilm stalk via ionic interactions. Our data demonstrate that the cationic charge of Pel is distinct from that of other known P. aeruginosa exopolysaccharides and is instrumental in its ability to interact with other key biofilm matrix components.


Assuntos
Biofilmes , DNA Bacteriano/metabolismo , Polissacarídeos Bacterianos/metabolismo , Pseudomonas aeruginosa/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cátions/química , DNA Bacteriano/química , DNA Bacteriano/genética , Matriz Extracelular/metabolismo , Espaço Extracelular/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Immunoblotting , Microscopia Confocal , Mutação , Lectinas de Plantas/química , Lectinas de Plantas/metabolismo , Polissacarídeos Bacterianos/química , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Receptores de N-Acetilglucosamina/química , Receptores de N-Acetilglucosamina/metabolismo , Coloração e Rotulagem/métodos
6.
J Bacteriol ; 198(19): 2643-50, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27068594

RESUMO

UNLABELLED: Members of the genus Burkholderia are known to be adept at biofilm formation, which presumably assists in the survival of these organisms in the environment and the host. Biofilm formation has been linked to quorum sensing (QS) in several bacterial species. In this study, we characterized Burkholderia thailandensis biofilm development under flow conditions and sought to determine whether QS contributes to this process. B. thailandensis biofilm formation exhibited an unusual pattern: the cells formed small aggregates and then proceeded to produce mature biofilms characterized by "dome" structures filled with biofilm matrix material. We showed that this process was dependent on QS. B. thailandensis has three acyl-homoserine lactone (AHL) QS systems (QS-1, QS-2, and QS-3). An AHL-negative strain produced biofilms consisting of cell aggregates but lacking the matrix-filled dome structures. This phenotype was rescued via exogenous addition of the three AHL signals. Of the three B. thailandensis QS systems, we show that QS-1 is required for proper biofilm development, since a btaR1 mutant, which is defective in QS-1 regulation, forms biofilms without these dome structures. Furthermore, our data show that the wild-type biofilm biomass, as well as the material inside the domes, stains with a fucose-binding lectin. The btaR1 mutant biofilms, however, are negative for fucose staining. This suggests that the QS-1 system regulates the production of a fucose-containing exopolysaccharide in wild-type biofilms. Finally, we present data showing that QS ability during biofilm development produces a biofilm that is resistant to dispersion under stress conditions. IMPORTANCE: The saprophyte Burkholderia thailandensis is a close relative of the pathogenic bacterium Burkholderia pseudomallei, the causative agent of melioidosis, which is contracted from its environmental reservoir. Since most bacteria in the environment reside in biofilms, B. thailandensis is an ideal model organism for investigating questions in Burkholderia physiology. In this study, we characterized B. thailandensis biofilm development and sought to determine if quorum sensing (QS) contributes to this process. Our work shows that B. thailandensis produces biofilms with unusual dome structures under flow conditions. Our findings suggest that these dome structures are filled with a QS-regulated, fucose-containing exopolysaccharide that may be involved in the resilience of B. thailandensis biofilms against changes in the nutritional environment.


Assuntos
Biofilmes/crescimento & desenvolvimento , Burkholderia/fisiologia , Percepção de Quorum/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fucose/química , Regulação Bacteriana da Expressão Gênica/fisiologia , Polissacarídeos Bacterianos/química
7.
Antimicrob Agents Chemother ; 58(12): 7273-82, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25267673

RESUMO

Staphylococcus epidermidis biofilm formation is responsible for the persistence of orthopedic implant infections. Previous studies have shown that exposure of S. epidermidis biofilms to sub-MICs of antibiotics induced an increased level of biofilm persistence. BODIPY FL-vancomycin (a fluorescent vancomycin conjugate) and confocal microscopy were used to show that the penetration of vancomycin through sub-MIC-vancomycin-treated S. epidermidis biofilms was impeded compared to that of control, untreated biofilms. Further experiments showed an increase in the extracellular DNA (eDNA) concentration in biofilms preexposed to sub-MIC vancomycin, suggesting a potential role for eDNA in the hindrance of vancomycin activity. Exogenously added, S. epidermidis DNA increased the planktonic vancomycin MIC and protected biofilm cells from lethal vancomycin concentrations. Finally, isothermal titration calorimetry (ITC) revealed that the binding constant of DNA and vancomycin was 100-fold higher than the previously reported binding constant of vancomycin and its intended cellular d-Ala-d-Ala peptide target. This study provides an explanation of the eDNA-based mechanism of antibiotic tolerance in sub-MIC-vancomycin-treated S. epidermidis biofilms, which might be an important factor for the persistence of biofilm infections.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , DNA Bacteriano/farmacologia , Staphylococcus epidermidis/efeitos dos fármacos , Vancomicina/antagonistas & inibidores , Antibacterianos/metabolismo , Biofilmes/crescimento & desenvolvimento , Transporte Biológico/efeitos dos fármacos , Compostos de Boro/química , DNA Bacteriano/metabolismo , Corantes Fluorescentes/química , Testes de Sensibilidade Microbiana , Microscopia Confocal , Solubilidade , Coloração e Rotulagem , Staphylococcus epidermidis/fisiologia , Vancomicina/metabolismo , Vancomicina/farmacologia
8.
Microbiol Res ; 282: 127656, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432017

RESUMO

Pseudomonas aeruginosa is an opportunistic bacterial pathogen that causes life-threatening and persistent infections in immunocompromised patients. It is the culprit behind a variety of hospital-acquired infections owing to its multiple tolerance mechanisms against antibiotics and disinfectants. Biofilms are sessile microbial aggregates that are formed as a result of the cooperation and competition between microbial cells encased in a self-produced matrix comprised of extracellular polymeric constituents that trigger surface adhesion and microbial aggregation. Bacteria in biofilms exhibit unique features that are quite different from planktonic bacteria, such as high resistance to antibacterial agents and host immunity. Biofilms of P. aeruginosa are difficult to eradicate due to intrinsic, acquired, and adaptive resistance mechanisms. Consequently, innovative approaches to combat biofilms are the focus of the current research. Nanocomposites, composed of two or more different types of nanoparticles, have diverse therapeutic applications owing to their unique physicochemical properties. They are emerging multifunctional nanoformulations that combine the desired features of the different elements to obtain the highest functionality. This review assesses the recent advances of nanocomposites, including metal-, metal oxide-, polymer-, carbon-, hydrogel/cryogel-, and metal organic framework-based nanocomposites for the eradication of P. aeruginosa biofilms. The characteristics and virulence mechanisms of P. aeruginosa biofilms, as well as their devastating impact and economic burden are discussed. Future research addressing the potential use of nanocomposites as innovative anti-biofilm agents is emphasized. Utilization of nanocomposites safely and effectively should be further strengthened to confirm the safety aspects of their application.


Assuntos
Nanocompostos , Infecções por Pseudomonas , Humanos , Pseudomonas aeruginosa , Biofilmes , Antibacterianos/farmacologia , Virulência , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Nanocompostos/química
9.
Environ Microbiol ; 15(10): 2865-78, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23751003

RESUMO

Biofilm cells are less susceptible to antimicrobials than their planktonic counterparts. While this phenomenon is multifactorial, the ability of the matrix to reduce antibiotic penetration into the biofilm is thought to be of limited importance studies suggest that antibiotics move fairly rapidly through biofilms. In this study, we monitored the transport of two clinically relevant antibiotics, tobramycin and ciprofloxacin, into non-mucoid Pseudomonas aeruginosa biofilms. To our surprise, we found that the positively charged antibiotic tobramycin is sequestered to the biofilm periphery, while the neutral antibiotic ciprofloxacin readily penetrated. We provide evidence that tobramycin in the biofilm periphery both stimulated a localized stress response and killed bacteria in these regions but not in the underlying biofilm. Although it is unclear which matrix component binds tobramycin, its penetration was increased by the addition of cations in a dose-dependent manner, which led to increased biofilm death. These data suggest that ionic interactions of tobramycin with the biofilm matrix limit its penetration. We propose that tobramycin sequestration at the biofilm periphery is an important mechanism in protecting metabolically active cells that lie just below the zone of sequestration.


Assuntos
Biofilmes , Matriz Extracelular/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Tobramicina/metabolismo , Tobramicina/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Ciprofloxacina/química , Ciprofloxacina/metabolismo , Ciprofloxacina/farmacologia , Pseudomonas aeruginosa/metabolismo , Tobramicina/química
10.
bioRxiv ; 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36909500

RESUMO

The biofilm matrix is composed of exopolysaccharides, eDNA, membrane vesicles, and proteins. While proteomic analyses have identified numerous matrix proteins, their functions in the biofilm remain understudied compared to the other biofilm components. In the Pseudomonas aeruginosa biofilm, several studies have identified OprF as an abundant matrix protein and, more specifically, as a component of biofilm membrane vesicles. OprF is a major outer membrane porin of P. aeruginosa cells. However, current data describing the effects of OprF in the P. aeruginosa biofilm is limited. Here we identify a nutrient-dependent effect of OprF in static biofilms, whereby Δ oprF cells form significantly less biofilm than wild type when grown in media containing glucose or low sodium chloride concentrations. Interestingly, this biofilm defect occurs during late static biofilm formation and is not dependent on the production of PQS, which is responsible for outer membrane vesicle production. Furthermore, while biofilms lacking OprF contain approximately 60% less total biomass than those of wild type, the number of cells in these two biofilms is equivalent. We demonstrate that P. aeruginosa Δ oprF biofilms with reduced biofilm biomass contain less eDNA than wild-type biofilms. These results suggest that the nutrient-dependent effect of OprF is involved in the maintenance of mature P. aeruginosa biofilms by retaining eDNA in the matrix. IMPORTANCE: Many pathogens form biofilms, which are bacterial communities encased in an extracellular matrix that protects them against antibacterial treatments. The roles of several matrix components of the opportunistic pathogen Pseudomonas aeruginosa have been characterized. However, the effects of P. aeruginosa matrix proteins remain understudied and are untapped potential targets for antibiofilm treatments. Here we describe a conditional effect of the abundant matrix protein OprF on late-stage P. aeruginosa biofilms. A Δ oprF strain formed significantly less biofilm in low sodium chloride or with glucose. Interestingly, the defective Δ oprF biofilms did not exhibit fewer resident cells but contained significantly less extracellular DNA (eDNA) than wild type. These results suggest that OprF is involved in matrix eDNA retention in mature biofilms.

11.
Nature ; 438(7071): 1116-22, 2005 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-16222246

RESUMO

Tri-methylation of histone H3 lysine 9 is important for recruiting heterochromatin protein 1 (HP1) to discrete regions of the genome, thereby regulating gene expression, chromatin packaging and heterochromatin formation. Here we show that HP1alpha, -beta, and -gamma are released from chromatin during the M phase of the cell cycle, even though tri-methylation levels of histone H3 lysine 9 remain unchanged. However, the additional, transient modification of histone H3 by phosphorylation of serine 10 next to the more stable methyl-lysine 9 mark is sufficient to eject HP1 proteins from their binding sites. Inhibition or depletion of the mitotic kinase Aurora B, which phosphorylates serine 10 on histone H3, causes retention of HP1 proteins on mitotic chromosomes, suggesting that H3 serine 10 phosphorylation is necessary for the dissociation of HP1 from chromatin in M phase. These findings establish a regulatory mechanism of protein-protein interactions, through a combinatorial readout of two adjacent post-translational modifications: a stable methylation and a dynamic phosphorylation mark.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Animais , Aurora Quinase B , Aurora Quinases , Homólogo 5 da Proteína Cromobox , Cromossomos Humanos/metabolismo , Células HeLa , Humanos , Metilação , Mitose , Oócitos/metabolismo , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Xenopus laevis
12.
Trends Microbiol ; 29(1): 5-7, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33187833

RESUMO

Intricate gene regulatory networks control the transition between the planktonic and biofilm lifestyles in bacteria. New evidence from Mhatre et al. uncovers how various adaptive mutations that arose in a key gene at the nexus of signaling networks in Burkholderia cenocepacia led to the emergence of lineages with different ecological roles, enabling stable coexistence of multiple genotypes and increasing productivity of the community.


Assuntos
Tentilhões , Adaptação Fisiológica/genética , Animais , Bactérias , Biofilmes
13.
Nat Commun ; 12(1): 1986, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790266

RESUMO

Many bacteria use the second messenger cyclic diguanylate (c-di-GMP) to control motility, biofilm production and virulence. Here, we identify a thermosensory diguanylate cyclase (TdcA) that modulates temperature-dependent motility, biofilm development and virulence in the opportunistic pathogen Pseudomonas aeruginosa. TdcA synthesizes c-di-GMP with catalytic rates that increase more than a hundred-fold over a ten-degree Celsius change. Analyses using protein chimeras indicate that heat-sensing is mediated by a thermosensitive Per-Arnt-SIM (PAS) domain. TdcA homologs are widespread in sequence databases, and a distantly related, heterologously expressed homolog from the Betaproteobacteria order Gallionellales also displayed thermosensitive diguanylate cyclase activity. We propose, therefore, that thermotransduction is a conserved function of c-di-GMP signaling networks, and that thermosensitive catalysis of a second messenger constitutes a mechanism for thermal sensing in bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Pseudomonas aeruginosa/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Transdução de Sinais/fisiologia , Algoritmos , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Cromatografia Líquida , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Espectrometria de Massas , Fósforo-Oxigênio Liases/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia , Temperatura
14.
Elife ; 82019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31180327

RESUMO

The second messenger signaling molecule cyclic diguanylate monophosphate (c-di-GMP) drives the transition between planktonic and biofilm growth in many bacterial species. Pseudomonas aeruginosa has two surface sensing systems that produce c-di-GMP in response to surface adherence. Current thinking in the field is that once cells attach to a surface, they uniformly respond by producing c-di-GMP. Here, we describe how the Wsp system generates heterogeneity in surface sensing, resulting in two physiologically distinct subpopulations of cells. One subpopulation has elevated c-di-GMP and produces biofilm matrix, serving as the founders of initial microcolonies. The other subpopulation has low c-di-GMP and engages in surface motility, allowing for exploration of the surface. We also show that this heterogeneity strongly correlates to surface behavior for descendent cells. Together, our results suggest that after surface attachment, P. aeruginosa engages in a division of labor that persists across generations, accelerating early biofilm formation and surface exploration.


Bacteria can adopt different lifestyles, depending on the environment in which they grow. They can exist as single cells that are free to explore their environment or group together to form 'biofilms'. The bacteria in biofilms stick to a surface, and produce a slimy 'matrix' that covers and thereby protects them. Biofilms have been found in lung infections that affect people with the genetic disorder cystic fibrosis, and can also form on the surface of medical implants. Because the biofilm lifestyle protects bacteria from the immune system and antimicrobial drugs, learning about how biofilms form could help researchers to discover ways to prevent and treat such infections. Many bacteria switch between the free-living and biofilm lifestyles by altering their levels of a signaling molecule called cyclic diguanylate monophosphate (called c-di-GMP for short). Bacteria living in biofilms have much higher levels of c-di-GMP than their free-living counterparts, and bacteria that have high levels of c-di-GMP produce more biofilm matrix. Bacteria called Pseudomonas aeruginosa use a protein signaling complex called the Wsp system to sense that they are on a surface and increase c-di-GMP production. Questions remained about how quickly this change in production occurs, and whether bacteria pass on their c-di-GMP levels to the new descendant cells when they divide. Armbruster et al. monitored individual cells of P. aeruginosa producing c-di-GMP as they began to form biofilms. Unexpectedly, not all cells increased their c-di-GMP levels when they first attached to a surface. Instead, Armbruster et al. found that there are two populations ­ high and low c-di-GMP cells ­ that each perform complementary and important tasks in the early stages of biofilm formation. The high c-di-GMP cells represent 'biofilm founders' that start to produce the biofilm matrix, whereas the low c-di-GMP cells represent 'surface explorers' that spend more time traveling along the surface. Armbruster et al. found that the Wsp surface sensing system generates these two populations of cells. Moreover, the c-di-GMP levels in a bacterial cell even affect the behavior of the descendant cells that form when it divides. This effect can persist for several cell generations. More work is needed to examine exactly how the biofilm founders and surface explorers interact and influence how biofilms form, and to discover if blocking c-di-GMP signaling prevents biofilm formation. This could ultimately lead to new strategies to prevent and treat infections in humans.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , GMP Cíclico/análogos & derivados , Pseudomonas aeruginosa/metabolismo , Aderência Bacteriana/genética , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum/genética
15.
PLoS One ; 14(6): e0216401, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31158231

RESUMO

Mucoid mucA22 Pseudomonas aeruginosa (PA) is an opportunistic lung pathogen of cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) patients that is highly sensitive to acidified nitrite (A-NO2-). In this study, we first screened PA mutant strains for sensitivity or resistance to 20 mM A-NO2- under anaerobic conditions that represent the chronic stages of the aforementioned diseases. Mutants found to be sensitive to A-NO2- included PA0964 (pmpR, PQS biosynthesis), PA4455 (probable ABC transporter permease), katA (major catalase, KatA) and rhlR (quorum sensing regulator). In contrast, mutants lacking PA0450 (a putative phosphate transporter) and PA1505 (moaA2) were A-NO2- resistant. However, we were puzzled when we discovered that mucA22 mutant bacteria, a frequently isolated mucA allele in CF and to a lesser extent COPD, were more sensitive to A-NO2- than a truncated ΔmucA deletion (Δ157-194) mutant in planktonic and biofilm culture, as well as during a chronic murine lung infection. Subsequent transcriptional profiling of anaerobic, A-NO2--treated bacteria revealed restoration of near wild-type transcript levels of protective NO2- and nitric oxide (NO) reductase (nirS and norCB, respectively) in the ΔmucA mutant in contrast to extremely low levels in the A-NO2--sensitive mucA22 mutant. Proteins that were S-nitrosylated by NO derived from A-NO2- reduction in the sensitive mucA22 strain were those involved in anaerobic respiration (NirQ, NirS), pyruvate fermentation (UspK), global gene regulation (Vfr), the TCA cycle (succinate dehydrogenase, SdhB) and several double mutants were even more sensitive to A-NO2-. Bioinformatic-based data point to future studies designed to elucidate potential cellular binding partners for MucA and MucA22. Given that A-NO2- is a potentially viable treatment strategy to combat PA and other infections, this study offers novel developments as to how clinicians might better treat problematic PA infections in COPD and CF airway diseases.


Assuntos
Proteínas de Bactérias/genética , Biofilmes , Pulmão/microbiologia , Mutação , Nitritos/farmacologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Doença Crônica , Humanos , Concentração de Íons de Hidrogênio , Plâncton/metabolismo , Plâncton/fisiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
16.
mBio ; 9(2)2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636440

RESUMO

Pseudomonas aeruginosa produces an extracellular biofilm matrix that consists of nucleic acids, exopolysaccharides, lipid vesicles, and proteins. In general, the protein component of the biofilm matrix is poorly defined and understudied relative to the other major matrix constituents. While matrix proteins have been suggested to provide many functions to the biofilm, only proteins that play a structural role have been characterized thus far. Here we identify proteins enriched in the matrix of P. aeruginosa biofilms. We then focused on a candidate matrix protein, the serine protease inhibitor ecotin (PA2755). This protein is able to inhibit neutrophil elastase, a bactericidal enzyme produced by the host immune system during P. aeruginosa biofilm infections. We show that ecotin binds to the key biofilm matrix exopolysaccharide Psl and that it can inhibit neutrophil elastase when associated with Psl. Finally, we show that ecotin protects both planktonic and biofilm P. aeruginosa cells from neutrophil elastase-mediated killing. This may represent a novel mechanism of protection for biofilms to increase their tolerance against the innate immune response.IMPORTANCE Proteins associated with the extracellular matrix of bacterial aggregates called biofilms have long been suggested to provide many important functions to the community. To date, however, only proteins that provide structural roles have been described, and few matrix-associated proteins have been identified. We developed a method to identify matrix proteins and characterized one. We show that this protein, when associated with the biofilm matrix, can inhibit a bactericidal enzyme produced by the immune system during infection and protect biofilm cells from death induced by the enzyme. This may represent a novel mechanism of protection for biofilms, further increasing their tolerance against the immune response. Together, our results are the first to show a nonstructural function for a confirmed matrix-interacting protein.


Assuntos
Antibacterianos/metabolismo , Biofilmes/crescimento & desenvolvimento , Matriz Extracelular de Substâncias Poliméricas/química , Elastase de Leucócito/antagonistas & inibidores , Proteínas Periplásmicas/análise , Pseudomonas aeruginosa/fisiologia , Viabilidade Microbiana , Proteínas Periplásmicas/metabolismo , Pseudomonas aeruginosa/metabolismo
17.
J Cell Biol ; 216(4): 925-941, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28314740

RESUMO

The chromosomal passenger complex (CPC), composed of inner centromere protein (INCENP), Survivin, Borealin, and the kinase Aurora B, contributes to the activation of the mitotic checkpoint. The regulation of CPC function remains unclear. Here, we reveal that in addition to Survivin and Borealin, the single α-helix (SAH) domain of INCENP supports CPC localization to chromatin and the mitotic checkpoint. The INCENP SAH domain also mediates INCENP's microtubule binding, which is negatively regulated by Cyclin-dependent kinase-mediated phosphorylation of segments flanking the SAH domain. The microtubule-binding capacity of the SAH domain is important for mitotic arrest in conditions of suppressed microtubule dynamics, and the duration of mitotic arrest dictates the probability, but not the timing, of cell death. Although independent targeting of INCENP to microtubules or the kinetochore/centromere promotes the mitotic checkpoint, it is insufficient for a robust mitotic arrest. Altogether, our results demonstrate that dual recognition of chromatin and microtubules by CPC is important for checkpoint maintenance and determination of cell fate in mitosis.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Microtúbulos/metabolismo , Mitose/fisiologia , Aurora Quinase B/metabolismo , Linhagem Celular Tumoral , Centrômero/metabolismo , Centrômero/fisiologia , Quinases Ciclina-Dependentes/metabolismo , Células HeLa , Humanos , Cinetocoros/metabolismo , Cinetocoros/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/fisiologia , Fosforilação/fisiologia , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo
18.
Pathogens ; 6(4)2017 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-29065453

RESUMO

Bacteria are social creatures that are able to interact and coordinate behaviors with each other in a multitude of ways. The study of such group behaviors in microbes was coined "sociomicrobiology" in 2005. Two such group behaviors in bacteria are quorum sensing (QS) and biofilm formation. At a very basic level, QS is the ability to sense bacterial density via cell-to-cell signaling using self-produced signals called autoinducers, and biofilms are aggregates of cells that are attached to one another via a self-produced, extracellular matrix. Since cells in biofilm aggregates are in close proximity, biofilms represent an ecologically relevant environment for QS. While QS is known to affect biofilm formation in both Gram-negative and Gram-positive species, in this review, we will focus exclusively on Gram-negative bacteria, with an emphasis on Pseudomonas aeruginosa. We will begin by describing QS systems in P. aeruginosa and how they affect P. aeruginosa biofilm formation. We then expand our review to other Gram-negative bacteria and conclude with interesting questions with regard to the effect of biofilms on QS.

20.
Nat Protoc ; 10(11): 1820-41, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26492139

RESUMO

Allelic exchange is an efficient method of bacterial genome engineering. This protocol describes the use of this technique to make gene knockouts and knock-ins, as well as single-nucleotide insertions, deletions and substitutions, in Pseudomonas aeruginosa. Unlike other approaches to allelic exchange, this protocol does not require heterologous recombinases to insert or excise selective markers from the target chromosome. Rather, positive and negative selections are enabled solely by suicide vector-encoded functions and host cell proteins. Here, mutant alleles, which are flanked by regions of homology to the recipient chromosome, are synthesized in vitro and then cloned into allelic exchange vectors using standard procedures. These suicide vectors are then introduced into recipient cells by conjugation. Homologous recombination then results in antibiotic-resistant single-crossover mutants in which the plasmid has integrated site-specifically into the chromosome. Subsequently, unmarked double-crossover mutants are isolated directly using sucrose-mediated counter-selection. This two-step process yields seamless mutations that are precise to a single base pair of DNA. The entire procedure requires ∼2 weeks.


Assuntos
Marcação de Genes/métodos , Genoma Bacteriano , Biologia Molecular/métodos , Pseudomonas aeruginosa/genética , Engenharia Genética , Vetores Genéticos , Recombinação Homóloga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA