Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Polym Au ; 3(3): 267-275, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37334194

RESUMO

Conjugated polymers offer a number of unique and useful properties for use as battery electrodes, and recent work has reported that conjugated polymers can exhibit excellent rate performance due to electron transport along the polymer backbone. However, the rate performance depends on both ion and electron conduction, and strategies for increasing the intrinsic ionic conductivities of conjugated polymer electrodes are lacking. Here, we investigate a series of conjugated polynapthalene dicarboximide (PNDI) polymers containing oligo(ethylene glycol) (EG) side chains that enhance ion transport. We produced PNDI polymers with varying contents of alkylated and glycolated side chains and investigated the impact on rate performance, specific capacity, cycling stability, and electrochemical properties through a series of charge-discharge, electrochemical impedance spectroscopy, and cyclic voltammetry measurements. We find that the incorporation of glycolated side chains results in electrode materials with exceptional rate performance (up to 500C, 14.4 s per cycle) in thick (up to 20 µm), high-polymer-content (up to 80 wt %) electrodes. Incorporation of EG side chains enhances both ionic and electronic conductivities, and we found that PNDI polymers with at least 90% of NDI units containing EG side chains functioned as carbon-free polymer electrodes. This work demonstrates that polymers with mixed ionic and electronic conduction are excellent candidates for battery electrodes with good cycling stability and capable of ultra-fast rate performance.

2.
Adv Mater ; 34(13): e2109442, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35088918

RESUMO

Microbial bioelectronic devices integrate naturally occurring or synthetically engineered electroactive microbes with microelectronics. These devices have a broad range of potential applications, but engineering the biotic-abiotic interface for biocompatibility, adhesion, electron transfer, and maximum surface area remains a challenge. Prior approaches to interface modification lack simple processability, the ability to pattern the materials, and/or a significant enhancement in currents. Here, a novel conductive polymer coating that significantly enhances current densities relative to unmodified electrodes in microbial bioelectronics is reported. The coating is based on a blend of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) crosslinked with poly(2-hydroxyethylacrylate) (PHEA) along with a thin polydopamine (PDA) layer for adhesion to an underlying indium tin oxide (ITO) electrode. When used as an interface layer with the current-producing bacterium Shewanella oneidensis MR-1, this material produces a 178-fold increase in the current density compared to unmodified electrodes, a current gain that is higher than previously reported thin-film 2D coatings and 3D conductive polymer coatings. The chemistry, morphology, and electronic properties of the coatings are characterized and the implementation of these coated electrodes for use in microbial fuel cells, multiplexed bioelectronic devices, and organic electrochemical transistor based microbial sensors are demonstrated. It is envisioned that this simple coating will advance the development of microbial bioelectronic devices.


Assuntos
Eletrônica , Polímeros , Condutividade Elétrica , Eletrodos , Polímeros/química
3.
ACS Macro Lett ; 9(11): 1590-1603, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35617074

RESUMO

Bioelectronics brings together the fields of biology and microelectronics to create multifunctional devices with the potential to address longstanding technological challenges and change our way of life. Microbial electrochemical devices are a growing subset of bioelectronic devices that incorporate naturally occurring or synthetically engineered microbes into electronic devices and have broad applications including energy harvesting, chemical production, water remediation, and environmental and health monitoring. The goal of this Viewpoint is to highlight recent advances and ongoing challenges in the rapidly developing field of microbial bioelectronic devices, with an emphasis on materials challenges. We provide an overview of microbial bioelectronic devices, discuss the biotic-abiotic interface in these devices, and then present recent advances and ongoing challenges in materials related to electron transfer across the abiotic-biotic interface, microbial adhesion, redox signaling, electronic amplification, and device miniaturization. We conclude with a summary and perspective of the field of microbial bioelectronics.

4.
ACS Synth Biol ; 9(12): 3245-3253, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33226772

RESUMO

Recombination can be used in the laboratory to overcome component limitations in synthetic biology by creating enzymes that exhibit distinct activities and stabilities from native proteins. To investigate how recombination affects the properties of an oxidoreductase that transfers electrons in cells, we created ferredoxin (Fd) chimeras by recombining distantly related cyanobacterial and cyanomyophage Fds (53% identity) that present similar midpoint potentials but distinct thermostabilities. Fd chimeras having a wide range of amino acid substitutions retained the ability to coordinate an iron-sulfur cluster, although their thermostabilities varied with the fraction of residues inherited from each parent. The midpoint potentials of chimeric Fds also varied. However, all of the synthetic Fds exhibited midpoint potentials outside of the parental protein range. Each of the chimeric Fds could also support electron transfer between Fd-NADP reductase and sulfite reductase in Escherichia coli, although the chimeric Fds varied in the expression required for similar levels of cellular electron transfer. These results show how Fds can be diversified through recombination and reveal differences in the inheritance of thermostability and electrochemical properties. Furthermore, they illustrate how electron transfer efficiencies of chimeric Fds can be rapidly evaluated using a synthetic metabolic pathway.


Assuntos
Ferredoxinas/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Cianobactérias/metabolismo , Transporte de Elétrons , Escherichia coli/metabolismo , Ferredoxina-NADP Redutase/química , Ferredoxina-NADP Redutase/metabolismo , Ferredoxinas/genética , Cinética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Estabilidade Proteica , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Alinhamento de Sequência , Temperatura , Temperatura de Transição , Proteínas Virais/genética
5.
J Biomol Struct Dyn ; 36(13): 3420-3433, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28984498

RESUMO

Amyloid fibril formation is associated with an array of degenerative diseases. While no real cure is currently available, evidence suggests that suppression of amyloid fibrillogenesis is an effective strategy toward combating these diseases. Brilliant blue R (BBR), a disulfonated triphenylmethane compound, has been shown to interact with fibril-forming proteins but exert different effects on amyloid fibrillogenesis. These inconsistent findings prompted us to further evaluate BBR's effect on the inhibition/suppresion of protein fibrillogenesis. Using 129-residue hen lysozyme, which shares high sequence homology to human lysozyme associated with hereditary non-neuropathic systemic amyloidosis, as a model, this study is aimed at thoroughly examining the influence of BBR on the in vitro protein fibrillogenesis. We first showed that BBR dose-dependently attenuated lysozyme fibril formation probably by affecting the fibril growth rate, with the value of IC50 determined to be ~4.39 µM. Next, we employed tryptophan fluorescence quenching method to determine the binding constant and number of binding site(s) associated with BBR-lysozyme binding. In addition, we further conducted molecular docking studies to gain a better understanding of the possible binding site(s) and interaction(s) between lysozyme and BBR. We believe some of the information and/or knowledge concerning the structure-function relationship associated with BBR's suppressing activity obtained here can be applied for the future work in the subject matter related with the therapeutic strategies for amyloid diseases.


Assuntos
Amiloide/biossíntese , Benzenossulfonatos/química , Muramidase/química , Sítios de Ligação , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Agregados Proteicos/fisiologia , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína
6.
Colloids Surf B Biointerfaces ; 142: 351-359, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26970823

RESUMO

At least 30 different human proteins can fold abnormally to form the amyloid deposits that are associated with a number of degenerative diseases. The research presented here aimed at understanding the inhibitory potency of a food additive, brilliant blue FCF (BBF), on the amyloid fibril formation of lysozyme. Our results demonstrated that BBF was able to suppress the formation of lysozyme fibrils in a dose-dependent fashion. In addition, the structural features and conformational changes in the lysozyme samples upon the addition of BBF were further characterized using circular dichroism spectroscopy, nile red fluorescence spectroscopy, turbidity assay, and sodium dodecyl sulfate electrophoresis. Through molecular docking and molecular dynamics simulations, BBF's mechanism of action in lysozyme fibrillogenesis inhibition was found to be initiated by binding with the aggregation-prone region of the lysozyme. We believe the results from this research may contribute to the development of effective therapeutics for amyloidoses.


Assuntos
Amiloide/química , Benzenossulfonatos/química , Aditivos Alimentares/química , Muramidase/química , Amiloide/antagonistas & inibidores , Animais , Sítios de Ligação , Galinhas , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Muramidase/antagonistas & inibidores , Agregados Proteicos , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína
7.
Food Funct ; 7(12): 4898-4907, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27824368

RESUMO

More than thirty human proteins and/or peptides can fold incorrectly to form amyloid deposits associated with several protein aggregation diseases. No cure is currently available for treating these diseases. This work is aimed at examining the inhibitory potency of fast green FCF, a biocompatible dye, toward the fibrillogenesis/aggregation of lysozyme. As verified by ThT binding assay along with transmission electron microscopy, fast green FCF was observed to suppress the generation of lysozyme fibrils in a concentration-dependent manner. We next used circular dichroism absorption spectroscopy, ANS fluorescence spectroscopy, and SDS-PAGE to characterize the structural alterations in lysozyme samples upon the addition of fast green FCF. Furthermore, experiments with the addition of fast green FCF at different time points of incubation showed that fast green FCF also exhibited disaggregating activity against the preformed/existing lysozyme fibrils. We believe that the results from this study suggest a potential therapeutic role of biocompatible molecules in treating or preventing protein aggregation diseases.


Assuntos
Amiloide/química , Corantes Verde de Lissamina/farmacologia , Muramidase/química , Animais , Benzotiazóis , Galinhas , Dicroísmo Circular , Clara de Ovo , Concentração de Íons de Hidrogênio , Corantes Verde de Lissamina/química , Tiazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA