Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Molecules ; 29(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38893512

RESUMO

COVID-19 continues to spread around the world. This is mainly because new variants of the SARS-CoV-2 virus emerge due to genomic mutations, evade the immune system and result in the effectiveness of current therapeutics being reduced. We previously established a series of detection platforms, comprising computational docking analysis, S-protein-based ELISA, pseudovirus entry, and 3CL protease activity assays, which allow us to screen a large library of phytochemicals from natural products and to determine their potential in blocking the entry of SARS-CoV-2. In this new screen, rutaecarpine (an alkaloid from Evodia rutaecarpa) was identified as exhibiting anti-SARS-CoV-2 activity. Therefore, we conducted multiple rounds of structure-activity-relationship (SAR) studies around this phytochemical and generated several rutaecarpine analogs that were subjected to in vitro evaluations. Among these derivatives, RU-75 and RU-184 displayed remarkable inhibitory activity when tested in the 3CL protease assay, S-protein-based ELISA, and pseudovirus entry assay (for both wild-type and omicron variants), and they attenuated the inflammatory response induced by SARS-CoV-2. Interestingly, RU-75 and RU-184 both appeared to be more potent than rutaecarpine itself, and this suggests that they might be considered as lead candidates for future pharmacological elaboration.


Assuntos
Antivirais , Desenho de Fármacos , Alcaloides Indólicos , Simulação de Acoplamento Molecular , Quinazolinas , SARS-CoV-2 , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , SARS-CoV-2/efeitos dos fármacos , Quinazolinas/farmacologia , Quinazolinas/química , Humanos , Antivirais/farmacologia , Antivirais/química , Relação Estrutura-Atividade , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Internalização do Vírus/efeitos dos fármacos , Quinazolinonas
2.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36614206

RESUMO

COVID-19, derived from SARS-CoV-2, has resulted in millions of deaths and caused unprecedented socioeconomic damage since its outbreak in 2019. Although the vaccines developed against SARS-CoV-2 provide some protection, they have unexpected side effects in some people. Furthermore, new viral mutations reduce the effectiveness of the current vaccines. Thus, there is still an urgent need to develop potent non-vaccine therapeutics against this infectious disease. We recently established a series of detecting platforms to screen a large library of Chinese medicinal herbs and phytochemicals. Here, we reveal that the ethanolic extract of Evodiae Fructus and one of its components, rutaecarpine, showed promising potency in inhibiting the activity of 3C-like (3CL) protease, blocking the entry of the pseudo-typed SARS-CoV-2 (including wild-type and omicron) into cultured cells. In addition, inflammatory responses induced by pseudo-typed SARS-CoV-2 were markedly reduced by Evodiae Fructus extract and rutaecarpine. Together our data indicate that the herbal extract of Evodiae Fructus and rutaecarpine are potent anti-SARS-CoV-2 agents, which might be considered as a treatment against COVID-19 in clinical applications.


Assuntos
COVID-19 , Medicamentos de Ervas Chinesas , Evodia , Humanos , SARS-CoV-2 , Medicamentos de Ervas Chinesas/farmacologia , Extratos Vegetais/farmacologia
3.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742898

RESUMO

Retinopathy of prematurity (ROP) is a severe eye disease leading to blindness. Abnormal vessel formation is the pathological hallmark of neovascular ROP. In forming vessels, vascular endothelial growth factor (VEGF) is an important stimulator. The current anti-ROP therapy has focused on bevacizumab, a monoclonal antibody against VEGF, and pazopanib, a tyrosine kinase inhibitor on the VEGF receptor (VEGFR). Several lines of evidence have proposed that natural compounds may be more effective and safer for anti-VEGF function. Resveratrol, a common natural compound, binds to VEGF and blocks its interaction with VEGFR, thereafter suppressing angiogenesis. Here, we evaluate the efficacy of intravitreal injection, or topical instillation (eye drops), of resveratrol into the eyes of mice suffering from oxygen-induced retinopathy, i.e., developing ROP. The treatment of resveratrol significantly relieved the degree of vascular distortion, permeability and hyperplasia; the efficacy could be revealed by both methods of resveratrol application. In parallel, the treatments of resveratrol inhibited the retinal expressions of VEGF, VEGFR and CD31. Moreover, the applied resveratrol significantly relieved the damage caused by oxygen radicals through upregulating the level of superoxide dismutase (SOD) and downregulating the level of malondialdehyde (MDA) in the retina. Taken together, the potential therapeutic benefit of resveratrol in pro-angiogenic diseases, including retinopathy, can be considered.


Assuntos
Retinopatia da Prematuridade , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Bevacizumab/uso terapêutico , Camundongos , Neovascularização Patológica/tratamento farmacológico , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Retinopatia da Prematuridade/tratamento farmacológico , Retinopatia da Prematuridade/patologia , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular
4.
Molecules ; 27(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35056713

RESUMO

To search hair growth-promoting herbal extract, a screening platform of having HEK293T fibroblast being transfected with pTOPFLASH DNA construct was developed over a thousand of herbal extracts and phytochemicals were screened. One of the hits was ethanolic extract of Rhizoma Belamcandae, the rhizome of Belamcanda chinensis (L.) DC. Tectoridin, an isoflavone from Rhizoma Belamcandae, was shown to be responsible for this activation of promoter construct, inducing the transcription of pTOPFLASH in the transfected fibroblasts in a dose-dependent manner. The blockage by DKK-1 suggested the action of tectoridin could be mediated by the Wnt receptor. The hair growth-promoting effects of tectoridin were illustrated in human follicular dermal papilla cells and mouse vibrissae organ cultures. In tectoridin-treated dermal papilla cultures, an activation of Wnt signaling was demonstrated by various indicative markers, including TCF/LEF1 transcriptional activity, nuclear translocation of ß-catenin, expressions level of mRNAs encoding axin-related protein, (AXIN2), ß-catenin, lymphoid enhancer-binding factor-1 (LEF-1), insulin-like growth factor 1 (IGF-1) and alkaline phosphatase (ALP). In addition, an increase of hair shaft elongation was observed in cultured mouse vibrissae upon the treatment of tectoridin. Tectoridin, as well as the herbal extract of Rhizoma Belamcandae, possesses hair promoting activity, which deserves further development.


Assuntos
Vibrissas , Animais
5.
Molecules ; 27(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35744929

RESUMO

COVID-19, resulting from infection by the SARS-CoV-2 virus, caused a contagious pandemic. Even with the current vaccines, there is still an urgent need to develop effective pharmacological treatments against this deadly disease. Here, we show that the water and ethanol extracts of the root and rhizome of Polygonum cuspidatum (Polygoni Cuspidati Rhizoma et Radix), a common Chinese herbal medicine, blocked the entry of wild-type and the omicron variant of the SARS-CoV-2 pseudotyped virus into fibroblasts or zebrafish larvae, with IC50 values ranging from 0.015 to 0.04 mg/mL. The extracts were shown to inhibit various aspects of the pseudovirus entry, including the interaction between the spike protein (S-protein) and the angiotensin-converting enzyme II (ACE2) receptor, and the 3CL protease activity. Out of the chemical compounds tested in this report, gallic acid, a phytochemical in P. cuspidatum, was shown to have a significant anti-viral effect. Therefore, this might be responsible, at least in part, for the anti-viral efficacy of the herbal extract. Together, our data suggest that the extracts of P. cuspidatum inhibit the entry of wild-type and the omicron variant of SARS-CoV-2, and so they could be considered as potent treatments against COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Fallopia japonica , Animais , Antivirais/análise , Antivirais/farmacologia , Fallopia japonica/química , Peptídeo Hidrolases , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Rizoma/química , SARS-CoV-2 , Pseudotipagem Viral , Peixe-Zebra
6.
J Neurochem ; 158(6): 1381-1393, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33930191

RESUMO

Neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, are devastating diseases in the elderly world, which are closely associated with progressive neuronal loss induced by a variety of genetic and/or environmental factors. Unfortunately, currently available treatments for neurodegenerative disorders can only relieve the symptoms but not modify the pathological processes. Over the past decades, our group by collaborating with Profs. Yuan-Ping Pang and Paul R. Carlier has developed three series of homo/hetero dimeric acetylcholinesterase inhibitors derived from tacrine and/or huperzine A. The representative dimers bis(3)-Cognitin (B3C), bis(12)-hupyridone, and tacrine(10)-hupyridone might possess disease-modifying effects through the modulation of N-methyl-d-aspartic acid receptors, the activation of myocyte enhancer factor 2D gene transcription, and the promotion of neurotrophic factor secretion. In this review, we summarize that the representative dimers, such as B3C, provide neuroprotection against a variety of neurotoxins via multiple targets, including the inhibitions of N-methyl-d-aspartic acid receptor with pathological-activated potential, neuronal nitric oxide synthase, and ß-amyloid cascades synergistically. More importantly, B3C might offer disease-modifying potentials by activating myocyte enhancer factor 2D transcription, inducing neuritogenesis, and promoting the expressions of neurotrophic factors in vitro and in vivo. Taken together, the novel dimers might offer synergistic disease-modifying effects, proving that dimerization might serve as one of the strategies to develop new generation of therapeutics for neurodegenerative disorders.


Assuntos
Acetilcolinesterase/metabolismo , Alcaloides/administração & dosagem , Inibidores da Colinesterase/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Doenças Neurodegenerativas/tratamento farmacológico , Sesquiterpenos/administração & dosagem , Tacrina/administração & dosagem , Alcaloides/química , Animais , Inibidores da Colinesterase/química , Combinação de Medicamentos , Sistemas de Liberação de Medicamentos/tendências , Humanos , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/enzimologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/química , Sesquiterpenos/química , Tacrina/química
7.
FASEB J ; 34(3): 4311-4328, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31965654

RESUMO

Corylin is a naturally occurring flavonoid isolated from the fruit of Psoralea corylifolia L. (Fabaceae), which is a Chinese medicinal herb in treating osteoporosis. Although a variety of pharmacological activities of corylin have been reported, its osteogenic action and the underlying mechanism in bone development remain unclear. In the present study, the involvement of bone-specific genes in corylininduced differentiated osteoblasts was analyzed by RT-PCR, promoter-reporter assay, and Western blotting. In cultured osteoblasts, corylin-induced cell differentiation and mineralization, as well as increased the expressions of vital biological markers for osteogenesis, such as Runx2, Osterix, Col1, and ALP. Corylin was proposed to have dual pathways in triggering the osteoblastic differentiation. First, the osteogenic function of corylin acted through the activation of Wnt/ß-catenin signaling. The nuclear translocation of ß-catenin of cultured osteoblasts, as determined by flow cytometry and confocal microscopy, was triggered by applied corylin, and which was blocked by DKK-1, an inhibitor of Wnt/ß-catenin signaling. Second, the application of corylin-induced estrogenic response in a dose-dependent manner, and which was blocked by ICI 182 780, an antagonist of estrogen receptor. Furthermore, the activation of Runx2 promoter by corylin was abolished by both DKK-1 and ICI 182,780, indicating that the corylin exhibited its osteogenic effect via estrogen and Wnt/ß-catenin signaling pathways. In addition, corylin regulated the metabolic profiles, as well as the membrane potential of mitochondria, in cultured osteoblasts. Corylin also stimulated the osteogenesis in bone micromass derived from mesenchymal progenitor cells. This study demonstrated the osteogenic activities of corylin in osteoblasts and micromass, suggesting that corylin has the potential to be developed as a novel pro-osteogenic agent in targeting for the treatment of osteoblast-mediated osteoporosis.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Flavonoides/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Psoralea/química , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Western Blotting , Proliferação de Células/genética , Sobrevivência Celular/genética , Células Cultivadas , Flavonoides/química , Citometria de Fluxo , Imuno-Histoquímica , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição Sp7/genética , Fator de Transcrição Sp7/metabolismo
8.
Phytother Res ; 35(3): 1456-1467, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33063371

RESUMO

More and more menopausal women use Danggui Buxue Tang (DBT) for relieving their symptoms. Concerns for its safety have been raised as it contains phytoestrogen and acts via estrogen receptors (ERs). Our study aimed to determine whether DBT could selectively exert estrogenic activities and interact with tamoxifen in bone, brain, uterus, and breast by using ovariectomized (OVX) rats and ER-positive cells. In OVX rats, DBT induced a 31.4% increase in bone mineral density and restored the mRNA expression of dopamine biomarker in striatum, 3.32-fold for tyrosine hydrolase (p < .001) and 0.21-fold for dopamine transporter (p < .001), which was similar to tamoxifen; tamoxifen, but not DBT, increased uterus weight and Complement component 3 expression by more than twofold (p < .001); unlike tamoxifen, DBT induced mild proliferation in mammary gland. Two-way ANOVA indicated the interactions between them in OVX rats (p < .05) but DBT did not alter the responses to tamoxifen. DBT stimulated proliferation or differentiation and estrogen response element in MCF-7, MG-63, Ishikawa, and SHSY5Y cells and altered the effects of tamoxifen. In summary, DBT exerted estrogenic effects in tissue-selective manner, which was different from tamoxifen. DBT interacted with tamoxifen but did not significantly alter its effects in OVX rats.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Estrogênios/uso terapêutico , Menopausa/efeitos dos fármacos , Tamoxifeno/uso terapêutico , Animais , Medicamentos de Ervas Chinesas/farmacologia , Estrogênios/farmacologia , Feminino , Humanos , Ratos , Ratos Sprague-Dawley , Tamoxifeno/farmacologia
9.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805517

RESUMO

Corylin, a flavonoid isolated from the fruit of Psoralea corylifolia, has an osteogenic effect on osteoblasts in vitro and bone micromass ex vivo. However, the effect and mechanism of corylin in regulating osteoclastogenesis remain unknown. By using murine bone marrow macrophages as the osteoclast precursor, corylin was found to inhibit the receptor activator of nuclear factor (NF) κB ligand (RANKL)-induced osteoclast differentiation via down-regulating osteoclastic marker genes. In parallel, F-actin formation and osteoclast migration were diminished in corylin-treated cultured osteoclasts, and subsequently the expressions of osteoclastic proteins were suppressed: the suppression of protein expression was further illustrated by transcriptomic analysis. Furthermore, corylin inhibited the nuclear translocation of p65, giving rise to a restraint in osteoclastic differentiation through the attenuation of transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor of activated T cells c1 (NFATc1). There was no obvious change in apoptosis when the RANKL-induce osteoclasts were cultured in the presence of corylin. The finding supports the potential development of corylin as an osteoclast inhibitor against osteoporosis.


Assuntos
Flavonoides/farmacologia , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Feminino , Perfilação da Expressão Gênica , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Osteoclastos/fisiologia , Osteogênese/fisiologia , Fagocitose/efeitos dos fármacos , Ligante RANK/genética , Células RAW 264.7
10.
FASEB J ; 33(1): 532-544, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29989844

RESUMO

Polydatin, also called piceid, is a stilbenoid glucoside of a resveratrol derivative. It derives mainly from the root and rhizome of Polygonum cuspidatum Sieb. et Zucc. Although the role of P. cuspidatum root in angiogenesis has been reported, the active chemical or chemicals responsible for such function is not known. Here, polydatin was proposed to bind VEGF, which therefore altered the functions of VEGF in angiogenesis. Several lines of evidence supported the pharmaceutical effects of polydatin in VEGF-induced angiogenesis. In human umbilical vein endothelial cells, polydatin inhibited VEGF-stimulated cell proliferation, cell migration, and tube formation. Moreover, polydatin showed suppressive effects on the subintestinal vessel formation in zebrafish embryos. In signaling cascades, polydatin application attenuated VEGF-induced phosphorylations of VEGF receptor 2 and JNK. Moreover, the VEGF-induced phosphorylations of Akt, eNOS, and Erk were significantly decreased in the presence of polydatin. In parallel, the formation of reactive oxygen species, triggered by VEGF, was markedly decreased under polydatin application. Thus, our results supported the angiogenic roles of polydatin, as well as its signaling mechanism in blocking VEGF-mediated responses. The current study provides support for the possible development of polydatin as a potential therapeutic agent for treatment and prevention of angiogenesis-related diseases.-Hu, W.-H., Wang, H.-Y., Kong, X.-P., Xiong, Q.-P., Poon, K. K.-M., Xu, L., Duan, R., Chan, G. K.-L., Dong, T. T.-X., Tsim, K. W.-K. Polydatin suppresses VEGF-induced angiogenesis through binding with VEGF and inhibiting its receptor signaling.


Assuntos
Inibidores da Angiogênese/farmacologia , Movimento Celular , Proliferação de Células , Glucosídeos/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Estilbenos/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Células Endoteliais da Veia Umbilical Humana , Humanos , Fosforilação , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra
11.
Fish Shellfish Immunol ; 106: 71-78, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32738512

RESUMO

A new cell line derived from dorsal fin of rabbit fish Siganus fuscescens was developed and characterized. The cell line was isolated from the dorsal fin, named as rabbit fish fin (RFF) cell line, and which was sub-cultured for 50 cycles since the development. This cell line was tested for growth in different temperatures and serum concentrations, and the best growing condition was at 20% serum at 28 °C. In cultured RFF cells, amplification of 18S rRNA from genomic DNA and immunostaining of cellular cytokeratin confirmed the proper identity of S. fuscescens fish. After 30th passage of cultures, the cells were exposed to challenge of inflammation, triggered by LPS, and hypoxia, mimicked by CoCl2. Cultured RFF cells showed robust sensitive responses to inflammation and hypoxia in directing the expressions of cytokines and hypoxia inducible factor-1α (HIF-1α). The water extract of aerial part of Scutellaria baicalensis (SBA) has been shown in rabbit fish to prevent inflammation. Here, we extended this notion of testing the efficacy of SBA extract in the developed cultured RFF cells. Application of SBA extract inhibited the expression of LPS-induced inflammatory cytokines, i.e. IL-1ß, IL-6, as well as the signaling of NF-κB. The application of CoCl2 in cultured RFF cells triggered the hypoxia-induced cell death and up regulation of HIF-1α. As expected, applied SBA extract in the cultures prevented the hypoxia-induced signaling. Our results show the established RFF cell line may be served as an ideal in vitro model in drug screening relating to inflammation and hypoxia. Additionally, we are supporting the usage of SBA herbal extract in fish aquaculture, which possesses efficacy against inflammation and hypoxia.


Assuntos
Anti-Inflamatórios/farmacologia , Doenças dos Peixes/imunologia , Perciformes/imunologia , Extratos Vegetais/farmacologia , Animais , Linhagem Celular , Hipóxia/imunologia , Hipóxia/veterinária , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Inflamação/imunologia , Inflamação/veterinária , NF-kappa B/imunologia , Scutellaria baicalensis , Transdução de Sinais/efeitos dos fármacos
12.
Molecules ; 25(17)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32824997

RESUMO

Piceatannol is also named as trans-3,4,3',5'-tetrahydroxy-stilbene, which is a natural analog of resveratrol and a polyphenol existing in red wine, grape and sugar cane. Piceatannol has been proved to possess activities of immunomodulatory, anti-inflammatory, antiproliferative and anticancer. However, the effect of piceatannol on VEGF-mediated angiogenesis is not known. Here, the inhibitory effects of piceatannol on VEGF-induced angiogenesis were tested both in vitro and in vivo models of angiogenesis. In human umbilical vein endothelial cells (HUVECs), piceatannol markedly reduced the VEGF-induced cell proliferation, migration, invasion, as well as tube formation without affecting cell viability. Furthermore, piceatannol significantly inhibited the formation of subintestinal vessel in zebrafish embryos in vivo. In addition, we identified the underlying mechanism of piceatannol in triggering the anti-angiogenic functions. Piceatannol was proposed to bind with VEGF, thus attenuating VEGF in activating VEGF receptor and blocking VEGF-mediated downstream signaling, including expressions of phosphorylated eNOS, Erk and Akt. Furthermore, piceatannol visibly suppressed ROS formation, as triggered by VEGF. Moreover, we further determined the outcome of piceatannol binding to VEGF in cancer cells: piceatannol significantly suppressed VEGF-induced colon cancer proliferation and migration. Thus, these lines of evidence supported the conclusion that piceatannol could down regulate the VEGF-mediated angiogenic functions with no cytotoxicity via decreasing the amount of VEGF binding to its receptors, thus affecting the related downstream signaling. Piceatannol may be developed into therapeutic agents or health products to reduce the high incidence of angiogenesis-related diseases.


Assuntos
Inibidores da Angiogênese/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Estilbenos/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fosforilação , Ligação Proteica , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Peixe-Zebra
13.
Fish Shellfish Immunol ; 87: 730-736, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30769079

RESUMO

Tumor necrosis factor receptor-associated factor 5 (TRAF5) is a key adapter molecule that participates in numerous signaling pathways. The function of TRAF5 in fish is largely unknown. In the present study, a TRAF5 cDNA sequence (EcTRAF5) was identified in grouper (Epinephelus coioides). Similar to its mammalian counterpart, EcTRAF5 contained an N-terminal RING finger domain, a zinc finger domain, a C-terminal TRAF domain, including a coiled-coil domain and a MATH domain. The EcTRAF5 protein shared relatively low sequence identity with that of other species, but clustered with TRAF5 sequences from other fish. Real-time PCR analysis revealed that EcTRAF5 mRNA was broadly expressed in numerous tissues, with relatively high expression in skin, hindgut, and head kidney. Additionally, the expression of EcTRAF5 was up-regulated in gills and head kidney after infection with Cryptocaryon irritans. Intracellular localization analysis demonstrated that the full-length EcTRAF5 protein was uniformly distributed in the cytoplasm; while a deletion mutant of the coiled-coil domain of EcTRAF5 was observed uniformly distributed in the cytoplasm and the nucleus. After exogenous expression in HEK293T cells, TRAF5 significantly activated NF-κB. The deletion of the EcTRAF5 RING domain or of the zinc finger domain dramatically impaired its ability to activate NF-κB, implying that the RING domain and the zinc finger domain are required for EcTRAF5 signaling.


Assuntos
Bass/genética , Bass/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Fator 5 Associado a Receptor de TNF/genética , Fator 5 Associado a Receptor de TNF/imunologia , Sequência de Aminoácidos , Animais , Cilióforos/fisiologia , Infecções por Cilióforos/imunologia , Infecções por Cilióforos/veterinária , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Filogenia , Alinhamento de Sequência/veterinária , Transdução de Sinais , Fator 5 Associado a Receptor de TNF/química
14.
Phytother Res ; 29(1): 22-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25175534

RESUMO

Different members of Lagochilus genus have been used in folkloric medicine to treat hemorrhages and inflammation. However, only a few species of them have received scientific attention supporting their efficacy. Here, the hemostatic and antiinflammatory activities of five Lagochilus species were determined and compared by using in vivo assays. The results showed that the extracts of Lagochilus lanatonodus and Lagochilus diacanthophyllus showed better hemostatic activities among five species. The high doses of L. lanatonodus extracts were able to shorten the values of thrombin time, activated partial thromboplastin time and prothrombin time in a rat model. Moreover, the extracts of L. lanatonodus and L. diacanthophyllus showed strong inhibitory effects on the acute phase of inflammation in both xylene-induced ear edema mouse model and carrageenan-induced paw edema rat model. In parallel, the treatment of these extracts modulated the expressions of those inflammatory parameters, that is, nitric oxide, prostaglandin E2 , inducible nitric oxide synthase, malondialdehyde and superoxide dismutase. L. lanatonodus and L. diacanthophyllus showed better hemostatic and antiinflammatory activities in several test models: these results therefore supported the folkloric utilization. L. lanatonodus was found to be the most active Lagochilus species.


Assuntos
Anti-Inflamatórios/farmacologia , Hemostáticos/uso terapêutico , Inflamação/tratamento farmacológico , Lamiaceae/química , Extratos Vegetais/farmacologia , Animais , Carragenina/efeitos adversos , Dinoprostona/metabolismo , Edema/tratamento farmacológico , Lamiaceae/classificação , Masculino , Malondialdeído/metabolismo , Camundongos Endogâmicos ICR , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Testes de Toxicidade Aguda
15.
Chem Res Toxicol ; 27(5): 775-86, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24641316

RESUMO

Pyrrolizidine alkaloids (PAs) are among the most hepatotoxic natural products that produce irreversible injury to humans via the consumption of herbal medicine and honey, and through tea preparation. Toxicity and death caused by PA exposure have been reported worldwide. Metabolomics and genomics provide scientific and systematic views of a living organism and have become powerful techniques for toxicology research. In this study, senecionine hepatotoxicity on rats was determined via a combination of metabolomic and genomic analyses. From the global analysis generated from two omics data, the compromised bile acid homeostasis in vivo was innovatively demonstrated and confirmed. Serum profiling of bile acids was altered with significantly elevated conjugated bile acids after senecionine exposure, which was in accordance with toxicity. Similarly, the hepatic mRNA levels of several key genes associated with bile acid metabolism were significantly changed. This process included cholesterol 7-α hydroxylase, bile acid CoA-amino acid N-acetyltransferase, sodium taurocholate cotransporting polypeptide, organic anion-transporting polypeptides, and multidrug-resistance-associated protein 3. In conclusion, a cross-omics study provides a comprehensive analysis method for studying the toxicity caused by senecionine, which is a hepatotoxic PA. Moreover, the change in bile acid metabolism and the respective transporters may provide a new PA toxicity mechanism.


Assuntos
Ácidos e Sais Biliares/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Alcaloides de Pirrolizidina/toxicidade , Animais , Ácidos e Sais Biliares/sangue , Ácidos e Sais Biliares/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Genômica/métodos , Fígado/metabolismo , Masculino , Metabolômica/métodos , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley
16.
Anal Bioanal Chem ; 406(29): 7715-27, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25234307

RESUMO

The toxicity assessment of herbal medicines is important for human health and appropriate utilization of these medicines. However, challenges have to be overcome because of the complexity of coexisting multiple components in herbal medicines and the highly interconnected organismal system. In this study, a target profiling approach was established by combining the characteristic fingerprint analysis of herbal chemicals with potential toxicity through a precursor ion scan-based mass spectroscopy and the target profiling analysis of biomarkers responsible for the toxicity. Through this newly developed approach, the comparative hepatotoxicity assessment of two herbal medicines from the same genus, Senecio vulgaris L. and Senecio scandens Buch.-Ham, was performed. Significant differences were found between the two species in their chemical markers (i.e., pyrrolizidine alkaloids) and biomarkers (i.e., bile acids) responsible for their toxicities. This result was consistent with the conventional toxicity assessment conducted by histopathological examination and clinical serum index assay on experimental animal models. In conclusion, this study provided a new approach for the hepatotoxicity assessment of herbal medicines containing pyrrolizidine alkaloids, which are widely distributed in various herbal medicines. The target profiling approach may shed light on the toxicity assessment of other herbal medicines with potential toxicity.


Assuntos
Ácidos e Sais Biliares/análise , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Plantas Medicinais/toxicidade , Alcaloides de Pirrolizidina/toxicidade , Espectrometria de Massas por Ionização por Electrospray/métodos , Testes de Toxicidade/métodos , Animais , Bioensaio/métodos , Biomarcadores/análise , Relação Dose-Resposta a Droga , Masculino , Mapeamento de Peptídeos/métodos , Ratos , Ratos Sprague-Dawley
17.
J Ethnopharmacol ; 334: 118585, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019417

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Alopecia, or hair loss, refers to ongoing decline of mature hair on the scalp or any other region of the body. Fructus Sophorae, a fruit from Sophora japonica L., contains various phytochemicals, e.g., sophoricoside, that exhibit a broad range of pharmacological effects. The potential functions of herbal extracts deriving from Fructus Sophorae and/or its major phytochemical, sophoricoside, in treating alopecia are probed here. AIM OF STUDY: The objective was to determine the ability of Fructus Sophorae extract and sophoricoside in promoting hair growth and it signalling mechanism. METHODS: Molecular docking studies were conducted to measure the binding affinities between sophoricoside and M4 mAChR in the allosteric binding site. The mechanism of Fructus Sophorae and sophoricoside in activating the signalling involving Wnt/ß-catenin and muscarinic AChR was evaluated by using immortalized human dermal papilla cell line (DPC), as well as their roles in promoting hair growth. The activity of pTOPflash-luciferase in transfected DPCs was used to examine the transcriptional regulation of Wnt/ß-catenin-mediated genes. RT-PCR was applied to quantify mRNA expressions of the biomarkers in DPCs responsible for hair growth. The phosphorylated protein levels of Wnt/ß-catenin and PI3K/AKT in DPC were revealed by using Western blot analysis. The culture of ex vivo mouse vibrissae hair follicle was used to evaluate the hair growth after the treatments. RESULTS: The ethanol extract of Fructus Sophorae and sophoricoside activated Wnt/ß-catenin signalling. The result of molecular docking showed a high binding affinity between sophoricoside and M4 mAChR. The effect of sophoricoside was blocked by specific inhibitor of M4 mAChR, but not by other inhibitors of mAChRs. Sophoricoside promoted hair growth in cultured ex vivo mouse vibrissae hair follicle by acting through M4 mAChR. CONCLUSION: The ethanol extract of Fructus Sophorae and sophoricoside activated Wnt/ß-catenin signalling via activation of M4 mAChR. The results suggested beneficial functions of Fructus Sophorae and sophoricoside as a potential candidate in treating alopecia.


Assuntos
Cabelo , Simulação de Acoplamento Molecular , Sophora , Animais , Humanos , Cabelo/crescimento & desenvolvimento , Cabelo/efeitos dos fármacos , Sophora/química , Camundongos , Linhagem Celular , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Alopecia/tratamento farmacológico , Frutas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Masculino , Benzopiranos
18.
Phytomedicine ; 115: 154832, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37121059

RESUMO

BACKGROUND: Various brain disorders, including neurodegenerative diseases and major depressive disorders, threaten an increasing number of patients. Seabuckthorn, a fruit from Hippophae rhamnoides L., is an example of "medicine food homology". The fruit has enriched flavonoids that reported to have benefits in treating cognitive disorders. However, the studies on potential functions of Seabuckthorn and/or its flavonoid-enriched fraction in treating neurodegenerative disorders are limited. PURPOSE: This study aimed to determine the ability and mechanism of the flavonoid-enriched fraction of Seabuckthorn (named as SBF) in mimicking the neurotrophic functions in inducing neurite outgrowth of cultured neurons. METHODS: Cultured PC12 cell line, SH-SY5Y cell line and primary neurons (cortical and hippocampal neurons isolated from E17-19 SD rat embryos) were the employed models to evaluate SBF in inducing neurite outgrowth by comparing to the effects of NGF and BDNF. Immuno-fluorescence staining was applied to identify the morphological change during the neuronal differentiation. Luciferase assay was utilized for analyzing the transcriptional regulation of neurofilaments and cAMP/CREB-mediated gene. Western blot assay was conducted to demonstrate the expressions of neurofilaments and phosphorylated proteins. RESULTS: The application of SBF induced neuronal cell differentiation, and this differentiating activation was blocked by the inhibitors of PI3K/Akt and ERK pathways. Additionally, SBF showed synergy with neurotrophic factors in stimulating the neurite outgrowth of cultured neurons. Moreover, the major flavonoids within SBF, i.e., isorhamnetin, quercetin and kaempferol, could account for the neurotrophic activities of SBF. CONCLUSION: Seabuckthorn flavonoids mimicked neurotrophic functions in inducing neuronal cell differentiation via activating PI3K/Akt and ERK pathways. The results suggest the beneficial functions of Seabuckthorn as a potential health food supplement in treating various brain disorders, e.g., neurodegenerative diseases.


Assuntos
Transtorno Depressivo Maior , Hippophae , Neuroblastoma , Doenças Neurodegenerativas , Ratos , Humanos , Animais , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Neuritos/metabolismo , Transtorno Depressivo Maior/metabolismo , Ratos Sprague-Dawley , Neuroblastoma/metabolismo , Neurônios , Crescimento Neuronal , Doenças Neurodegenerativas/tratamento farmacológico
19.
Food Funct ; 14(16): 7426-7438, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37485660

RESUMO

Seabuckthorn (Hippophae rhamnoides L.), which is enriched with flavonoids, including isorhamnetin, quercetin and kaempferol, is a representative example of "medicine food homology" targeting several diseases. Major depressive disorders seriously threaten mental health worldwide and may even lead to death. Chronic unpredictable mild stress (CUMS)-induced depressive-like symptoms in mice are usually considered as the highest similarity to the situation in humans. Herein, we determined the potential functions of the flavonoid-enriched fraction from Seabuckthorn, which was named SBF, in treating major depressive disorder in mice. In the CUMS-induced mouse model, the intake of SBF reversed their depressive behaviors and relieved the CUMS-disturbed levels of neurotrophins, neurotransmitters, stress-related hormones, and inflammation-related cytokines. Additionally, the treatment of depressive mice with SBF showed ability to regulate the gut microbiota, especially in decreasing the abundance of Lactobacillaceae, while increasing the abundance of Lachnospiraceae at the family level. The results suggest the beneficial effects of Seabuckthorn flavonoids in functioning as a health food supplement to treat major depressive disorders.


Assuntos
Transtorno Depressivo Maior , Microbioma Gastrointestinal , Hippophae , Humanos , Camundongos , Animais , Flavonoides/farmacologia , Transtorno Depressivo Maior/tratamento farmacológico , Depressão/tratamento farmacológico
20.
J Ethnopharmacol ; 308: 116299, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36842721

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Curcumae Longae Rhizoma (CLR) is a safe natural herbal medicine, and which has been widely used for centuries as functional food and health products, but its effects on angiogenesis and related underlying mechanism remain unclear. AIM OF THE STUDY: The abnormal angiogenesis is closely related with various diseases, and therefore the precise control of angiogenesis is of great importance. The well-known angiogenic factor, vascular endothelial growth factor (VEGF), mediates angiogenesis and induces multiple signalling pathways via binding to VEGF receptor (VEGFR). The attenuation of VEGF-triggered angiogenic-related signalling pathways may relieve various diseases through suppression of angiogenesis. Here, we aimed to elucidate that CLR extract could exert striking anti-angiogenic activities both in vitro and in vivo. MATERIALS AND METHODS: The viability of human umbilical vascular endothelial cell (HUVEC) was examined by LDH and MTT assays. Migrative and invasive ability of the endothelial cells were independently evaluated by wound healing and transwell assays. The activities of CLR extract on in vitro angiogenesis was tested by tube formation assay. In vivo vascularization was determined by using zebrafish embryo model in the present of CLR extract. Western blotting was applied to determine the phosphorylated levels of VEGFR2, PI3K, AKT and eNOS. Besides, the levels of nitric oxide (NO) and reactive oxygen species (ROS) were separately evaluated by Griess assay and 2'7'-dichlorofluorescein diacetate reaction. In addition, the cell migrative ability of cancer cell was estimated by using cultured human colon carcinoma cells (HT-29 cell line), and immunofluorescence assay was applied to evaluate the effect of CLR extract on nuclear translocation of NF-κB p65 subunit in the VEGF-treated HT-29 cultures. RESULTS: CLR extract significantly suppressed a series of VEGF-mediated angiogenic responses, including endothelial cell proliferation, migration, invasion, and tube formation. Moreover, CLR extract reduced in vivo sub-intestinal vessel formation in zebrafish embryo model. Mechanistically, the extract of CLR attenuated the VEGF-triggered signalling, as demonstrated by decreased level of phosphorylated VEGFR2 and subsequently inactivated its downstream regulators, e.g. phospho-PI3K, phospho-AKT and phospho-eNOS. The production of NO and formation of ROS were markedly inhibited in HUVECs. Furthermore, CLR extract suppressed cell migration and NF-κB translocation in cultured HT-29 cells. CONCLUSIONS: These preclinical findings demonstrate that the extract of CLR remarkably attenuates angiogenesis and which has great potential as a natural drug candidate with excellent anti-angiogenic activity.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Fator A de Crescimento do Endotélio Vascular , Animais , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Peixe-Zebra , Fosfatidilinositol 3-Quinases/metabolismo , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Endoteliais da Veia Umbilical Humana , Extratos Vegetais/farmacologia , Movimento Celular , Proliferação de Células , Inibidores da Angiogênese/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA