Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Int ; 178: 108116, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523942

RESUMO

Traffic noise is a growing threat to the urban population. Prolonged exposure to traffic noise has been linked to negative health consequences such as annoyance, sleep disturbances and cardiovascular diseases. While electric vehicles are known to have lower noise profiles, the impacts of electric mobility on traffic noise, especially for electrified heavy-duty vehicles, have not been thoroughly examined. This study aims to examine the impacts of both electric light-duty vehicles and electric buses on traffic noise levels in a highly urbanized city. Traffic noise along the source line and pedestrian network was first estimated and mapped to illustrate its spatiotemporal variations. Then, scenario analysis was used to compare the impacts. Population potentially benefiting from reduced traffic noise in the neighbourhoods and the associated health impacts were also estimated. Results indicate that electric buses have a greater potential to reduce traffic noise, with a maximum reduction of 4.4 dBA during daytime in the urban cores. With all bus fleet electrified, around 60% of the population can benefit from a reduction of 1 dBA at the street environment, 15.3% for 1-2 dBA, and 4.3% for more than 2 dBA. The estimated reduction of preventable deaths and preventable cases of diseases per 100,000 population are 4.15 and 112.99 respectively. The findings shed important insights into prioritizing bus routes to be electrified in urban areas for maximizing health co-benefits.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ruído dos Transportes , Humanos , Ruído dos Transportes/efeitos adversos , Poluição do Ar/análise , Cidades , Veículos Automotores , População Urbana , Poluentes Atmosféricos/análise
2.
Front Public Health ; 11: 1128889, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089495

RESUMO

Introduction: This study sets out to provide scientific evidence on the spatial risk for the formation of a superspreading environment. Methods: Focusing on six common types of urban facilities (bars, cinemas, gyms and fitness centers, places of worship, public libraries and shopping malls), it first tests whether visitors' mobility characteristics differ systematically for different types of facility and at different locations. The study collects detailed human mobility and other locational data in Chicago, Hong Kong, London, São Paulo, Seoul and Zurich. Then, considering facility agglomeration, visitors' profile and the density of the population, facilities are classified into four potential spatial risk (PSR) classes. Finally, a kernel density function is employed to derive the risk surface in each city based on the spatial risk class and nature of activities. Results: Results of the human mobility analysis reflect the geographical and cultural context of various facilities, transport characteristics and people's lifestyle across cities. Consistent across the six global cities, geographical agglomeration is a risk factor for bars. For other urban facilities, the lack of agglomeration is a risk factor. Based on the spatial risk maps, some high-risk areas of superspreading are identified and discussed in each city. Discussion: Integrating activity-travel patterns in risk models can help identify areas that attract highly mobile visitors and are conducive to superspreading. Based on the findings, this study proposes a place-based strategy of non-pharmaceutical interventions that balance the control of the pandemic and the daily life of the urban population.


Assuntos
População Urbana , Humanos , Cidades , Brasil , Hong Kong , Seul
3.
Sci Rep ; 11(1): 4699, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633273

RESUMO

COVID-19 reaffirms the vital role of superspreaders in a pandemic. We propose to broaden the research on superspreaders through integrating human mobility data and geographical factors to identify superspreading environment. Six types of popular public facilities were selected: bars, shopping centres, karaoke/cinemas, mega shopping malls, public libraries, and sports centres. A historical dataset on mobility was used to calculate the generalized activity space and space-time prism of individuals during a pre-pandemic period. Analysis of geographic interconnections of public facilities yielded locations by different classes of potential spatial risk. These risk surfaces were weighed and integrated into a "risk map of superspreading environment" (SE-risk map) at the city level. Overall, the proposed method can estimate empirical hot spots of superspreading environment with statistical accuracy. The SE-risk map of Hong Kong can pre-identify areas that overlap with the actual disease clusters of bar-related transmission. Our study presents first-of-its-kind research that combines data on facility location and human mobility to identify superspreading environment. The resultant SE-risk map steers the investigation away from pure human focus to include geographic environment, thereby enabling more differentiated non-pharmaceutical interventions and exit strategies to target some places more than others when complete city lockdown is not practicable.


Assuntos
COVID-19/transmissão , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Microbiologia Ambiental , Hong Kong/epidemiologia , Humanos , Logradouros Públicos , Restaurantes , Fatores de Risco , SARS-CoV-2/isolamento & purificação , Instalações Esportivas e Recreacionais
4.
J Glob Health ; 12: 03081, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463506
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA