Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 64(8): 858-865, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37130092

RESUMO

In green plants, photosystem I (PSI) and photosystem II (PSII) bind to their respective light-harvesting complexes (LHCI and LHCII) to form the PSI-LHCI supercomplex and the PSII-LHCII supercomplex, respectively. These supercomplexes further form megacomplexes, like PSI-PSII and PSII-PSII in Arabidopsis (Arabidopsis thaliana) and spinach to modulate their light-harvesting properties, but not in the green alga Chlamydomonas reinhardtii. Here, we fractionated and characterized the stable rice PSI-PSII megacomplex. The delayed fluorescence from PSI (lifetime ∼25 ns) indicated energy transfer capabilities between the two photosystems (energy spillover) in the rice PSI-PSII megacomplex. Fluorescence lifetime analysis revealed that the slow PSII to PSI energy transfer component was more dominant in the rice PSI-PSII supercomplexes than in Arabidopsis ones, suggesting that PSI and PSII in rice form a megacomplex not directly but through LHCII molecule(s), which was further confirmed by the negatively stained electron microscopy analysis. Our results suggest species diversity in the formation and stability of photosystem megacomplexes, and the stable PSI-PSII supercomplex in rice may reflect its structural adaptation.


Assuntos
Arabidopsis , Oryza , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Oryza/metabolismo , Arabidopsis/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo
2.
Plant Cell Physiol ; 60(3): 503-515, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30690508

RESUMO

Grain size is a key determiner of grain weight, one of the yield components in rice (Oryza sativa). Therefore, to increase grain yield, it is important to elucidate the detailed mechanisms regulating grain size. The Large grain (Lgg) mutant, found in the nonautonomous DNA-based active rice transposon1 (nDart1)-tagged lines of Koshihikari, is caused by a truncated nDart1-3 and 355 bp deletion in the 5' untranslated region of LGG, which encodes a putative RNA-binding protein, through transposon display and cosegregation analysis between grain length and LGG genotype in F2 and F3. Clustered regularly interspaced short palindromic repeats/CRISPR-associated 9-mediated knockout and overexpression of LGG led to longer and shorter grains than wild type, respectively, showing that LGG regulates spikelet hull length. Expression of LGG was highest in the 0.6-mm-long young panicle and gradually decreased as the panicle elongated. LGG was also expressed in roots and leaves. These results show that LGG functions at the very early stage of panicle development. Longitudinal cell numbers of spikelet hulls of Lgg, knockout and overexpressed plants were significantly different from those of the wild type, suggesting that LGG might regulate longitudinal cell proliferation in the spikelet hull. RNA-Seq analysis of 1-mm-long young panicles from LGG knockout and overexpressing plants revealed that the expressions of many cell cycle-related genes were reduced in knockout plants relative to LGG-overexpressing plants and wild type, whereas some genes for cell proliferation were highly expressed in knockout plants. Taken together, these results suggest that LGG might be a regulator of cell cycle and cell division in the rice spikelet hull.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Elementos de DNA Transponíveis/genética , Grão Comestível/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
3.
Theor Appl Genet ; 132(12): 3347-3355, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31583438

RESUMO

KEY MESSAGE: Dart1-24, one of the 37 autonomous DNA transposon Dart1s, was heritably activated by the demethylation of the 5' region following 5-azaC treatment of rice seeds. Transposons are controlled by epigenetic regulations. To obtain newly activated autonomous elements of Dart1, a DNA transposon, in rice, seeds of a stable pale yellow leaf (pyl-stb) mutant caused by the insertion of nDart1-0, a nonautonomous element in OsClpP5, were treated with 5-azaC, a demethylating agent. In the 5-azaC-treated M1 plants, 60-70% of the plants displayed variegated pale yellow leaf (pyl-v) phenotype, depending on the concentration of 5-azaC used, suggesting that inactivated Dart1 might become highly activated by 5-azaC treatment and nDart1-0 was excised from OsClpP5 by the activated Dart1s. Although the M2 plants derived from most of these pyl-v plants showed stable pyl phenotypes, some variegated M1 plants generated pyl-v M2 progeny. These results indicated that most M1 pyl-v phenotypes at M1 were not heritable. Dart1-24, 1-27 and 1-28 were expressed in the M2 pyl-v plants, and mapping analysis confirmed that Dart1-24 was newly activated. Further, the transgenerational activation of Dart1-24 was demonstrated to be caused by the demethylation of nucleotides in its 5' region.


Assuntos
Azacitidina/farmacologia , Elementos de DNA Transponíveis , Oryza/genética , Mapeamento Cromossômico , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Oryza/efeitos dos fármacos , Fenótipo , Sementes/genética
4.
Breed Sci ; 69(4): 696-701, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31988635

RESUMO

To utilize a transposon-tagged mutant as a breeding material in rice, an endogenous DNA transposon, nDart1-0, was introduced into Koshihikari by successive backcrossing together with aDart1-27, an active autonomous element. The founder line for nDart1-tagged lines of Koshihikari carried nDart1-0 on chromosome 9 and transposed nDart1-12s on chromosomes 1 and 8 and nDart1-3 on chromosome 11. In nDart1-tagged lines, there were the most abnormal phenotypic mutants and many aberrant chlorophyll mutants at seedling stage. At mature stage, many semi-sterile mutants were observed. Dwarf, reduced culm number and lesion mimic mutants were also found. In total, 43.2% of the lines segregated some phenotypic mutants. Thus, the nDart1-tagged lines of Koshihikari are expected to be potentially useful for screening stress-tolerant mutants under abiotic or biotic stress conditions.

5.
Breed Sci ; 68(3): 381-384, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30100806

RESUMO

To obtain a clear intact section of a ripened rice grain, which is suitable for biochemical and histological analysis, the Kawamoto method using a specific adhesive film was applied using a cryomicrotome. The longitudinal and sagittal sections were easily obtained together with the cross-section, and cell characteristics were clearly discerned in the ripened grain. It was demonstrated that the Kawamoto method is readily applicable for intact sectioning of hard tissue, including ripened grain. Intact section sampling may be useful for enzymatic analysis and transcriptomic analysis of plant tissue.

6.
Breed Sci ; 66(5): 720-733, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28163588

RESUMO

To improve rice yield, a wide genetic pool is necessary. It is therefore important to explore wild rice relatives. Oryza longistaminata is a distantly related wild rice relative that carries the AA genome. Its potential for improving agronomic traits is not well studied. Introgression line (pLIA-1) that carries Oryza longistaminata's chromosome segments, showed high performance in yield-related traits under non-fertilized conditions. Therefore, to illustrate Oryza longistaminata's potential for improving yield-related traits, RILs from the F1 of a cross between pLIA-1 and Norin 18 were developed and QTL analysis was done using the RAD-Seq method. In total, 36 QTLs for yield-related traits were identified on chromosomes 1, 2, 3, 5, 6, 7, 8, 10, and 11. Clusters of QTLs for strongly correlated traits were also identified on chromosomes 1, 3, 6, and 8. Phenotypic data from recombinant plants for chromosomes 1 and 8 QTL clusters revealed that the pLIA-1 genotype on chromosome 1 region was more important for panicle-related traits and a combination of pLIA-1 genotypes on chromosomes 1 and 8 showed a favorable phenotype under non-fertilized conditions. These results suggest that Oryza longistaminata's chromosome segments carry important alleles that can be used to improve yield-related traits of rice.

7.
Plant Cell Physiol ; 55(1): 3-15, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24151203

RESUMO

Active DNA transposons are important tools for gene functional analysis. The endogenous non-autonomous transposon, nDart1-0, in rice (Oryza sativa L.) is expected to generate various transposon-insertion mutants because nDart1-0 elements tend to insert into genic regions under natural growth conditions. We have developed a specific method (nDart1-0-iPCR) for efficient detection of nDart1-0 insertions and successfully identified the SNOW-WHITE LEAF1 (SWL1) gene in a variegated albino (swl1-v) mutant obtained from the nDart1-promoted rice tagging line. The variegated albino phenotype was caused by insertion and excision of nDart1-0 in the 5'-untranslated region of the SWL1 gene predicted to encode an unknown protein with the N-terminal chloroplast transit peptide. SWL1 expression was detected in various rice tissues at different developmental stages. However, immunoblot analysis indicated that SWL1 protein accumulation was strictly regulated in a tissue-specific manner. In the swl1 mutant, formations of grana and stroma thylakoids and prolamellar bodies were inhibited. This study revealed that SWL1 is essential for the beginning of thylakoid membrane organization during chloroplast development. Furthermore, we provide a developmental perspective on the nDart1-promoted tagging line to characterize unidentified gene functions in rice.


Assuntos
Alelos , Genes de Plantas/genética , Mutação/genética , Oryza/genética , Proteínas de Plantas/genética , Tilacoides/genética , Sequência de Aminoácidos , Sequência de Bases , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Proteínas de Fluorescência Verde/metabolismo , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Oryza/ultraestrutura , Fenótipo , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Frações Subcelulares/metabolismo , Tilacoides/ultraestrutura
8.
Plant Cell Physiol ; 53(5): 766-84, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22302712

RESUMO

DNA methylation is a type of epigenetic marking that strongly influences chromatin structure and gene expression in plants and mammals. Over the past decade, DNA methylation has been intensively investigated in order to elucidate its control mechanisms. These studies have shown that small RNAs are involved in the induction of DNA methylation, that there is a relationship between DNA methylation and histone methylation, and that the base excision repair pathway has an important role in DNA demethylation. Some aspects of DNA methylation have also been shown to be shared with mammals, suggesting that the regulatory pathways are, in part at least, evolutionarily conserved. Considerable progress has been made in elucidating the mechanisms that control DNA methylation; however, many aspects of the mechanisms that read the information encoded by DNA methylation and mediate this into downstream regulation remain uncertain, although some candidate proteins have been identified. DNA methylation has a vital role in the inactivation of transposons, suggesting that DNA methylation is a key factor in the evolution and adaptation of plants.


Assuntos
Metilação de DNA/genética , Elementos de DNA Transponíveis/genética , Histonas/metabolismo , Plantas/genética , Processamento de Proteína Pós-Traducional/genética , RNA de Plantas/metabolismo , Plantas/enzimologia , RNA de Plantas/genética
9.
Plant Cell Physiol ; 53(5): 857-68, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22514089

RESUMO

A large part of the rice genome is composed of transposons. Since active excision/reintegration of these mobile elements may result in harmful genetic changes, many transposons are maintained in a genetically or epigenetically inactivated state. However, some non-autonomous DNA transposons of the nDart1-3 subgroup, including nDart1-0, actively transpose in specific rice lines, such as pyl-v which carries an active autonomous element, aDart1-27, on chromosome 6. Although nDart1-3 subgroup elements show considerable sequence identity, they display different excision frequencies. The most active element, nDart1-0, had a low cytosine methylation status. The aDart1-27 sequence showed conservation between pyl-stb (pyl-v derivative line) and Nipponbare, which both lack autonomous activity for transposition of nDart1-3 subgroup elements. In pyl-v plants, the promoter region of the aDart1-27 transposase gene was more hypomethylated than in other rice lines. Treatment with the methylation inhibitor 5-azacytidine (5-azaC) induced transposition of nDart1-3 subgroup elements in both pyl-stb and Nipponbare plants; the new insertion sites were frequently located in genic regions. 5-AzaC treatment principally induced expression of Dart1-34 transposase rather than the other 38 aDart1-related elements in both pyl-stb and Nipponbare treatment groups. Our observations show that transposition of nDart1-3 subgroup elements in the nDart1/aDart1 tagging system is correlated with the level of DNA methylation. Our system does not cause somaclonal variation due to an absence of transformed plants, offers the possibility of large-scale screening in the field and can identify dominant mutants. We therefore propose that this tagging system provides a valuable addition to the tools available for rice functional genomics.


Assuntos
Elementos de DNA Transponíveis/genética , DNA de Plantas/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Azacitidina/farmacologia , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Epigênese Genética/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Ácidos Hidroxâmicos/farmacologia , Mutação/genética , Oryza/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/genética , Análise de Sequência de DNA , Transposases/genética , Transposases/metabolismo
10.
Mol Genet Genomics ; 284(5): 343-55, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20830488

RESUMO

The nonautonomous nDart1 element in the hAT superfamily is one of a few active DNA transposons in rice. Its transposition can be induced by crossing with a line containing an active autonomous element, aDart1, and stabilized by segregating aDart1. No somaclonal variation should occur in nDart1-promoted gene tagging because no tissue culture is involved in nDart1 activation. By transposon display analysis, we examined the activities of nDart1-related elements in the selfed progeny of a mutable virescent pyl-v plant containing aDart1. Although various nDart1-related elements are present in the rice genome, only nDart1-3 subgroup elements, nDart1-0 and nDart1-3 in particular, were found to be transposed frequently and integrated into various sites almost all over the genome, and a fraction of the transposed elements were found to be transmitted to the next generation. More than half of the newly integrated elements were identified as nDart1-0. Analysis of the newly inserted sites revealed that the nDart1-3 subgroup elements were predominantly integrated into single-copy regions. More than 60% of the transposed elements were inserted into the genic regions that comprise putative coding regions and their 0.5-kb flanking segments, and approximately two-thirds of them were within the 0.5-kb area in front of the putative initiation codons, i.e., promoter-proximal genic regions. These characteristic features of nDart1-3 subgroup elements seem to be suitable for developing an efficient and somaclonal variation-free gene tagging system for rice functional genomics.


Assuntos
Elementos de DNA Transponíveis , DNA de Plantas/genética , Oryza/genética , Cromossomos de Plantas , Genoma de Planta
11.
Mol Genet Genomics ; 281(3): 329-44, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19123010

RESUMO

An endogenous 0.6-kb rice DNA transposon, nDart1-0, was found as an active nonautonomous element in a mutable virescent line, pyl-v, displaying leaf variegations. Here, we demonstrated that the active autonomous element aDart in pyl-v corresponds to Dart1-27 on chromosome 6 in Nipponbare, which carries no active aDart elements, and that aDart and Dart1-27 are identical in their sequences and chromosomal locations, indicating that Dart1-27 is epigenetically silenced in Nipponbare. The identification of aDart in pyl-v was first performed by map-based cloning and by detection of the accumulated transposase transcripts. Subsequently, various transposition activities of the cloned Dart1-27 element from Nipponbare were demonstrated in Arabidopsis. Dart1-27 in Arabidopsis was able to excise nDart1-0 and Dart1-27 from cloned sites, generating footprints, and to integrate into new sites, generating 8-bp target site duplications. In addition to Dart1-27, Nipponbare contains 37 putative autonomous Dart1 elements because their putative transposase genes carry no apparent nonsense or frameshift mutations. Of these, at least four elements were shown to become active aDart elements in transgenic Arabidopsis plants, even though considerable sequence divergence arose among their transposases. Thus, these four Dart1 elements and Dart1-27 in Nipponbare must be potential autonomous elements silenced epigenetically. The regulatory and evolutionary implications of the autonomous Dart1 elements and the development of an efficient transposon-tagging system in rice are discussed.


Assuntos
Elementos de DNA Transponíveis/genética , DNA de Plantas/genética , Oryza/genética , Arabidopsis/genética , Sequência de Bases , Mapeamento Cromossômico , Cromossomos de Plantas/genética , DNA Bacteriano/genética , Inativação Gênica , Vetores Genéticos , Plantas Geneticamente Modificadas , Transformação Genética
12.
Genes Genet Syst ; 82(2): 109-22, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17507777

RESUMO

Transposon display (TD) is a powerful technique to identify the integration site of transposons in gene tagging as a functional genomic tool for elucidating gene function. Although active endogenous DNA transposons have been used extensively for gene tagging in maize, only two active endogenous DNA transposons in rice have been identified, the 0.43-kb element mPing of the MITE family and the 0.6-kb nDart element of the hAT family. The nDart transposition was shown to be induced by crossing with a line containing its autonomous element aDart and stabilized by segregating aDart under natural growth conditions, while mPing-related elements were shown to transpose in cultured cells, plants regenerated from an anther culture, and gamma-ray-irradiated plants. No somaclonal variation should occur in nDart-promoted gene tagging because no tissue culture was involved in nDart activation. As an initial step to develop an effective tagging system using nDart in rice, we tried to visualize GC-rich nDart-related elements comprising 18 nDart-related sequences of 0.6-kb and 63 nDart-related elements longer than 2 kb in Nipponbare by TD. Comparing the observed bands in TD with the anticipated virtual bands of the nDart-related elements based upon the available rice genome sequence, we have improved our TD protocol by optimizing the PCR amplification conditions and are able to visualize approximately 87% of the anticipated bands produced from the nDart-related elements. To compare the visualization efficiency of these nDart-related elements with that of 50 mPing elements and a unique Ping sequence in Nipponbare, we also tried to visualize the mPing-related elements; all mPing-related elements are easily visualized. Based on these results, we discuss the parameters affecting the visualization efficiencies of these rice DNA transposons. We also discuss the utilization of nDart elements in gene tagging for functional genomics in rice.


Assuntos
Elementos de DNA Transponíveis/fisiologia , Genômica/métodos , Oryza/genética , Sequência de Bases , Bases de Dados Genéticas , Marcação de Genes/métodos , Modelos Biológicos , Dados de Sequência Molecular
13.
Nat Biotechnol ; 20(10): 1030-4, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12219079

RESUMO

Modification of genes through homologous recombination, termed gene targeting, is the most direct method to characterize gene function. In higher plants, however, the method is far from a common practice. Here we describe an efficient and reproducible procedure with a strong positive/negative selection for gene targeting in rice, which feeds more than half of the world's population and is an important model plant. About 1% of selected calli and their regenerated fertile plants were heterozygous at the targeted locus, and only one copy of the selective marker used was found at the targeted site in their genomes. The procedure's applicability to other genes will make it feasible to obtain various gene-targeted lines of rice.


Assuntos
Evolução Molecular Direcionada/métodos , Marcação de Genes/métodos , Genes de Plantas/genética , Oryza/genética , Plantas Geneticamente Modificadas/genética , Recombinação Genética , Sequência de Bases , Clonagem Molecular , DNA Bacteriano/genética , Dados de Sequência Molecular , Oryza/classificação , Controle de Qualidade , Rhizobium/genética , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Transformação Genética , Transgenes
14.
Sci Rep ; 5: 14357, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26403301

RESUMO

A non-autonomous DNA transposon in rice, nDart1, is actively transposed in the presence of an autonomous element, aDart1, under natural conditions. The nDart1-promoted gene tagging line was developed using the endogenous nDart1/aDart1 system to generate various rice mutants effectively. While the dominant mutants were occasionally isolated from the tagging line, it was unclear what causes dominant mutations. A semidominant mutant, Bushy dwarf tiller1 (Bdt1), which has the valuable agronomic traits of multiple tillering and dwarfism, was obtained from the tagging line. Bdt1 mutant carried a newly inserted nDart1 at 38-bp upstream of transcription initiation site of a non-protein-coding gene, miR156d. This insertion caused an upstream shift of the miR156d transcription initiation site and, consequently, increased the functional transcripts producing mature microRNAs. These results indicate that the total amount of miR156d is controlled not only by transcript quantity but also by transcript quality. Furthermore, transgenic lines introduced an miR156d fragment that flanked the nDart1 sequence at the 5' region, suggesting that insertion of nDart1 in the gene promoter region enhances gene expression as a cis-element. This study demonstrates the ability of nDart1 to produce gain-of-function mutants as well as further insights into the function of transposable elements in genome evolution.


Assuntos
Elementos de DNA Transponíveis , Genes de Plantas , MicroRNAs/genética , Mutagênese Insercional , Mutação , Oryza/genética , Alelos , Regulação da Expressão Gênica de Plantas , Genes Dominantes , Estudos de Associação Genética , Fenótipo , Interferência de RNA , Transcrição Gênica
15.
Genes Genet Syst ; 86(3): 215-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21952211

RESUMO

As a useful tool to elucidate gene functions, a rice transposon tagging line has been developed using an active endogenous DNA transposon, nDart1. It was highly desirable to evaluate the transposition timing and frequency of the nDart1 elements during rice development to facilitate the generation of an efficient mutant isolation system. Comparison of the detected new insertions at different stages of rice development by transposon display analysis demonstrated that the last heading tiller carry a higher number of nDart1 elements than the main culm. Moreover, it was revealed that the last heading tiller could produce progeny that carried more new insertions of nDart1 elements, mainly as a result of the accumulation of somatic insertions in the parental plant. This report demonstrates that late tillers increase the probability of producing independent mutant lines.


Assuntos
Elementos de DNA Transponíveis/genética , Genes de Plantas/genética , Oryza/crescimento & desenvolvimento , Oryza/genética , Folhas de Planta/genética , Genótipo , Técnicas de Amplificação de Ácido Nucleico , Folhas de Planta/metabolismo , Fatores de Tempo
16.
J Genet Genomics ; 38(3): 123-8, 2011 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-21477784

RESUMO

We have isolated a recessive rice mutant, designated as indeterminate growth (ing), which displays creeping and apparent heterochronic phenotypes in the vegetative period with lanky and winding culms. Rough mapping and subsequent molecular characterization revealed that the ing mutant carries a large deletion, which corresponds to a 103 kb region in the Nipponbare genome, containing nine annotated genes on chromosome 3. Of these annotated genes, the SLR1 gene encoding a DELLA protein is the only one that is well characterized in its function, and its null mutation, which is caused by a single base deletion in the middle of the intronless SLR1 gene, confers a slender phenotype that bears close resemblance to the ing mutant phenotype. The primary cause of the ing mutant phenotype is the deletion of the SLR1 gene, and the ing mutant appears to be the first characterized mutant having the entire SLR1 sequence deleted. Our results also suggest that the deleted region of 103 kb does not contain an indispensable gene, whose dysfunction must result in a lethal phenotype.


Assuntos
Oryza/crescimento & desenvolvimento , Oryza/genética , Proteínas de Plantas/genética , Deleção de Sequência , Alelos , Sequência de Bases , Genes Recessivos/genética , Dados de Sequência Molecular , Oryza/metabolismo , Fenótipo , Retroelementos/genética
17.
Theor Appl Genet ; 116(3): 395-405, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18060657

RESUMO

An endogenous 0.6-kb rice DNA transposon, nDart1, has been identified as a causative element of a spontaneous mutable virescent allele pyl-v conferring pale-yellow leaves with dark-green sectors in the seedlings, due to somatic excision of nDart1 integrated into the OsClpP5 gene encoding the nuclear-coded chloroplast protease. As the transposition of nDart1 depends on the presence of an active autonomous aDart element in the genome, the plants exhibiting the leaf variegation carry the active aDart element. As several mutable alleles caused by nDart1 insertions have subsequently been identified, nDart1-promoted gene tagging has been proven to be an effective system. At present, the nDart/aDart system appears to be the only endogenous rice DNA transposon system whose transposition activity can be controlled under natural growth conditions without any artificial treatments, including tissue cultures. To apply the nDart/aDart tagging system in various cultivated rice varieties, we explored the presence and distribution of an active autonomous aDart element in 19 temperate japonica, 30 tropical japonica, and 51 indica varieties. Only eight temperate japonica varieties were found to bear a single copy of an active aDart element, and no aDart activity could be detected in the indica varieties examined. Six of seven japonica varieties appear to carry the active aDart element at the identical site on chromosome 6, whereas the remaining one contains aDart on chromosome 5. Leaf variegations in the plants with the mutable pyl-v allele and the excision frequencies of endogenous nDart1 elements indicated that the aDart element on chromosome 6 is more active than that on chromosome 5. The findings described here are an important step in the development of a new and efficient nDart1-promoted gene-tagging system in various rice cultivars.


Assuntos
Agricultura , Elementos de DNA Transponíveis/genética , Oryza/genética , Mapeamento Físico do Cromossomo , Segregação de Cromossomos , Cruzamentos Genéticos , Regulação da Expressão Gênica de Plantas , Oryza/classificação , Folhas de Planta/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Plant J ; 45(1): 46-57, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16367953

RESUMO

While characterized mutable alleles caused by DNA transposons have been abundant in maize since the discovery of Dissociation conferring variegation by Barbara McClintock, only a few mutable alleles have been described in rice even though the rice genome contains various transposons. Here, we show that a spontaneous mutable virescent allele, pyl-v, is caused by the disruption of the nuclear-coded essential chloroplast protease gene, OsClpP5, due to insertion of a 607-bp non-autonomous DNA transposon, non-autonomous DNA-based active rice transposon one (nDart1), belonging to the hAT superfamily. The transposition of nDart1 can be induced by crossing with a line containing an autonomous element, aDart, and stabilized by segregating out of aDart. We also identified a novel mutable dwarf allele thl-m caused by an insertion of nDart1. The japonica cultivar Nipponbare carries no aDart, although it contains epigenetically silenced Dart element(s), which can be activated by 5-azacytidine. Nipponbare bears four subgroups of about 3.6-kb Dart-like sequences, three of which contain potential transposase genes, and around 3.6-kb elements without an apparent transposase gene, as well as three subgroups of about 0.6-kb nDart1-related elements that are all internal deletions of the Dart-like sequences. Both nDart1 and 3.6-kb Dart-like elements were also present in indica varieties 93-11 and Kasalath. nDart1 appears to be the most active mutagen among nDart1-related elements contributing to generating natural variations. A candidate for an autonomous element, aDart, and a possible application of nDart1 for transposon tagging are discussed.


Assuntos
Elementos de DNA Transponíveis , Mutação , Oryza/genética , Folhas de Planta , Alelos , Sequência de Bases , DNA de Plantas , Oryza/crescimento & desenvolvimento , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA