Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(21): 24480-24485, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35579546

RESUMO

Interphase formation at the interface between a solid electrolyte and negative electrode is one of the main factors limiting the practical use of all-solid-state sodium batteries. Sulfide-type solid electrolytes with group 15 elements (P and Sb) exhibit high ductility and ionic conductivity, comparable to those of organic liquid electrolytes. However, the electronically conductive interphase formed at the interface between Na3PS4 and sodium metal increases the cell resistance and deteriorates its electrochemical properties. Contrarily, Na3BS3, containing boron as an electrochemically inert element, forms an electronically insulating thin passivate interphase, facilitating reversible sodium plating and stripping. Sodium-metal symmetric cells with Na3BS3 exhibit steady operation over 1000 cycles. Thus, reduction-stable solid electrolytes can be developed by substitution with an electrochemically inert element versus sodium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA