Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 75(1): 454-467, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37738570

RESUMO

The protist pathogen Plasmodiophora brassicae hijacks the metabolism and development of host cruciferous plants and induces clubroot formation, but little is known about its regulatory mechanisms. Previously, the Pnit2int2 sequence, a sequence around the second intron of the nitrilase gene (BrNIT2) involved in auxin biosynthesis in Brassica rapa ssp. pekinensis, was identified as a specific promoter activated during clubroot formation. In this study, we hypothesized that analysis of the transcriptional regulation of Pnit2int2 could reveal how P. brassicae affects the host gene regulatory system during clubroot development. By yeast one-hybrid screening, the pathogen zinc finger protein PbZFE1 was identified to specifically bind to Pnit2int2. Specific binding of PbZFE1 to Pnit2int2 was also confirmed by electrophoretic mobility shift assay. The binding site of PbZFE1 is essential for promoter activity of Pnit2int2 in clubbed roots of transgenic Arabidopsis thaliana (Pnit2int2-2::GUS), indicating that PbZFE1 is secreted from P. brassicae and functions within plant cells. Ectopic expression of PbZEF1 in A. thaliana delayed growth and flowering time, suggesting that PbZFE1 has significant impacts on host development and metabolic systems. Thus, P. brassicae appears to secrete PbZFE1 into host cells as a transcription factor-type effector during pathogenesis.


Assuntos
Arabidopsis , Plasmodioforídeos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Doenças das Plantas/genética , Plasmodioforídeos/fisiologia , Regulação da Expressão Gênica , Arabidopsis/genética , Arabidopsis/metabolismo , Expressão Gênica
2.
Breed Sci ; 70(2): 221-230, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32523404

RESUMO

Burkholderia glumae causes bacterial seedling rot (BSR) and bacterial grain rot (BGR) in rice (Oryza sativa), both of which are important diseases in Japan. We previously evaluated major Japanese cultivars for BGR resistance and selected standard cultivars for resistance assessments. Here, we assessed the BSR occurrence rate in cultivars from the World Rice Collection (WRC) and other sources and found wide variation in resistance. Next, we evaluated major Japanese cultivars for BSR resistance and found that two Japanese landraces, 'Kujuu' and 'Aikoku', showed "strong" resistance; most others were categorized as "medium" or "medium to weak". We previously developed a near-isogenic line (RBG1-NIL) by introducing the genomic region containing RBG1, a quantitative trait locus (QTL) for BSR resistance, from 'Nona Bokra' (indica) into 'Koshihikari' (temperate japonica). The resistance level of RBG1-NIL was "strong", indicating the effectiveness of RBG1 against BSR. The correlation between BSR and BGR resistance scores was low, indicating that it is necessary to introduce QTLs for resistance from different sources to develop cultivars resistant to both BSR and BGR. On the basis of the screening results, we selected standard cultivars for BSR resistance to cover a range of resistance levels.

3.
Breed Sci ; 68(4): 413-419, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30369815

RESUMO

Bacterial grain rot (BGR), caused by the bacterial pathogen Burkholderia glumae, is one of the most destructive rice (Oryza sativa) diseases in Japan; however, there are no BGR-resistant cultivars for use in Japan. We previously developed a cut-panicle inoculation method to assess the levels of BGR resistance in the World Rice Collection (WRC). Here, we evaluated major Japanese cultivars for BGR resistance and found that none showed "strong" or "medium to strong" resistance; most were categorized as "medium to weak". On the basis of the screening results, standard cultivars for BGR resistance were selected according to resistance level and relative maturity. Our results indicate that it is necessary to introduce quantitative trait loci (QTLs) from indica or tropical japonica resistant cultivars into Japanese temperate japonica to develop BGR-resistant cultivars for Japan. We previously developed a near-isogenic line (RBG2-NIL) by introducing the genomic region containing RBG2 from 'Kele' (indica) into 'Hitomebore'. In this experiment, we confirmed the resistance level of RBG2-NIL. The resistance score of RBG2-NIL was "medium to strong", indicating its effectiveness against BGR.

4.
Plant Cell Rep ; 33(1): 99-110, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24121643

RESUMO

KEY MESSAGE: Activation of SA-dependent signaling pathway and suppression of JA-dependent signaling pathway seem to play key roles inB. thuringiensis-induced resistance toR. solanacearumin tomato plants. Bacillus thuringiensis, a well-known and effective bio-insecticide, has attracted considerable attention as a potential biological control agent for the suppression of plant diseases. Treatment of tomato roots with a filter-sterilized cell-free filtrate (CF) of B. thuringiensis systemically suppresses bacterial wilt caused by Ralstonia solanacearum through systemic activation of the plant defense system. Comparative analysis of the expression of the Pathogenesis-Related 1(P6) gene, a marker for induced resistance to pathogens, in various tissues of tomato plants treated with CF on their roots suggested that the B. thuringiensis-induced defense system was activated in the leaf, stem, and main root tissues, but not in the lateral root tissue. At the same time, the growth of R. solanacearum was significantly suppressed in the CF-treated main roots but not in the CF-treated lateral roots. This distinct activation of the defense reaction and suppression of R. solanacearum were reflected by the differences in the transcriptional profiles of the main and lateral tissues in response to the CF. In CF-treated main roots, but not CF-treated lateral roots, the expression of several salicylic acid (SA)-responsive defense-related genes was specifically induced, whereas jasmonic acid (JA)-related gene expression was either down-regulated or not induced in response to the CF. On the other hand, genes encoding ethylene (ET)-related proteins were induced equally in both the main and lateral root tissues. Taken together, the co-activation of SA-dependent signaling pathway with ET-dependent signaling pathway and suppression of JA-dependent signaling pathway may play key roles in B. thuringiensis-induced resistance to R. solanacearum in tomato.


Assuntos
Bacillus thuringiensis/fisiologia , Resistência à Doença/genética , Perfilação da Expressão Gênica , Doenças das Plantas/imunologia , Raízes de Plantas/microbiologia , Ralstonia solanacearum/fisiologia , Solanum lycopersicum/genética , Sistema Livre de Células , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ralstonia solanacearum/crescimento & desenvolvimento , Transdução de Sinais/genética , Fatores de Tempo , Regulação para Cima/genética
5.
Appl Environ Microbiol ; 79(5): 1619-28, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23275503

RESUMO

Deoxynivalenol (DON) is a natural toxin of fungi that cause Fusarium head blight disease of wheat and other small-grain cereals. DON accumulates in infected grains and promotes the spread of the infection on wheat, posing serious problems to grain production. The elucidation of DON-catabolic genes and enzymes in DON-degrading microbes will provide new approaches to decrease DON contamination. Here, we report a cytochrome P450 system capable of catabolizing DON in Sphingomonas sp. strain KSM1, a DON-utilizing bacterium newly isolated from lake water. The P450 gene ddnA was cloned through an activity-based screening of a KSM1 genomic library. The genes of its redox partner candidates (flavin adenine dinucleotide [FAD]-dependent ferredoxin reductase and mitochondrial-type [2Fe-2S] ferredoxin) were not found adjacent to ddnA; the redox partner candidates were further cloned separately based on conserved motifs. The DON-catabolic activity was reconstituted in vitro in an electron transfer chain comprising the three enzymes and NADH, with a catalytic efficiency (k(cat)/K(m)) of 6.4 mM(-1) s(-1). The reaction product was identified as 16-hydroxy-deoxynivalenol. A bioassay using wheat seedlings revealed that the hydroxylation dramatically reduced the toxicity of DON to wheat. The enzyme system showed similar catalytic efficiencies toward nivalenol and 3-acetyl deoxynivalenol, toxins that frequently cooccur with DON. These findings identify an enzyme system that catabolizes DON, leading to reduced phytotoxicity to wheat.


Assuntos
Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Sphingomonas/enzimologia , Tricotecenos/metabolismo , Proteínas de Bactérias/genética , Clonagem Molecular , Coenzimas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Cinética , Dados de Sequência Molecular , NAD/metabolismo , Oxirredução , Análise de Sequência de DNA , Sphingomonas/isolamento & purificação , Microbiologia da Água
6.
Appl Microbiol Biotechnol ; 97(17): 7679-88, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23224497

RESUMO

Two yeast strains, which have the ability to degrade biodegradable plastic films, were isolated from the larval midgut of a stag beetle, Aegus laevicollis. Both of them are most closely related to Cryptococcus magnus and could degrade biodegradable plastic (BP) films made of poly(butylene succinate) (PBS) and poly(butylene succinate-co-adipate) (PBSA) effectively. A BP-degrading enzyme was purified from the culture broth of one of the isolated strains employing a newly developed affinity purification method based on the binding action of the enzyme to the substrate (emulsified PBSA) and its subsequent degradative action toward the substrate. Partial amino acid sequences of this enzyme suggested that it belongs to the cutinase family, and thus, the enzyme was named CmCut1. It has a molecular mass of 21 kDa and a degradative activity for emulsified PBSA which was significantly enhanced by the simultaneous presence of Ca(2+) or Mg(2+) at a concentration of about 2.5 mM. Its optimal pH was 7.5, and the optimal temperature was 40 °C. It showed a broad substrate specificity for p-nitrophenyl (pNP)-fatty acid esters ranging from pNP-acetate (C2) to pNP-stearate (C18) and films of PBSA, PBS, poly(ε-caprolactone), and poly(lactic acid).


Assuntos
Plásticos Biodegradáveis/metabolismo , Besouros/microbiologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Leveduras/enzimologia , Leveduras/isolamento & purificação , Adipatos/metabolismo , Sequência de Aminoácidos , Animais , Butileno Glicóis/metabolismo , Cromatografia de Afinidade , Besouros/crescimento & desenvolvimento , Estabilidade Enzimática , Proteínas Fúngicas/genética , Trato Gastrointestinal/microbiologia , Larva/microbiologia , Dados de Sequência Molecular , Peso Molecular , Polímeros/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Succinatos/metabolismo , Leveduras/química , Leveduras/metabolismo
7.
Can J Microbiol ; 59(6): 368-73, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23750950

RESUMO

Andosols comprise one of the most important soil groups for agricultural activities in Japan because they cover about 46.5% of arable upland fields. In this soil group, available phosphorus (P) is accumulated by application of excessive fertilizer, but little is known about the influence of increasing P availability on microbial community diversity at large scales. We collected soil samples from 9 agro-geographical sites with Andosol soils across an available P gradient (2048.1-59.1 mg P2O5·kg(-1)) to examine the influence of P availability on the fungal community diversity. We used polymerase chain reaction - denaturing gradient gel electrophoresis to analyze the fungal communities based on 18S rRNA genes. Statistical analyses revealed a high negative correlation between available P and fungal diversity (H'). Fungal diversity across all sites exhibited a significant hump-shaped relationship with available P (R(2) = 0.38, P < 0.001). In addition, the composition of the fungal community was strongly correlated with the available P gradient. The ribotype F6, which was positively correlated with available P, was closely related to Mortierella. The results show that both the diversity and the composition of the fungal community were influenced by available P concentrations in Andosols, at a large scale. This represents an important step toward understanding the processes responsible for the maintenance of fungal diversity in Andosolic soils.


Assuntos
Biodiversidade , Fungos/classificação , Fungos/isolamento & purificação , Fósforo/análise , Microbiologia do Solo , Solo/química , Produtos Agrícolas , DNA Fúngico/análise , Eletroforese em Gel de Gradiente Desnaturante , Fertilizantes , Fungos/genética , Japão , Reação em Cadeia da Polimerase , Ribotipagem
8.
Sci Rep ; 13(1): 3947, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894555

RESUMO

Burkholderia glumae causes bacterial seedling rot (BSR) of rice and is a threat to a consistent food supply. When previously screening for resistance against B. glumae in the resistant cultivar Nona Bokra (NB) versus the susceptible cultivar Koshihikari (KO), we detected a gene, Resistance to Burkholderia glumae 1 (RBG1), at a quantitative trait locus (QTL). Here, we found that RBG1 encodes a MAPKKK gene whose product phosphorylates OsMKK3. We also found that the kinase encoded by the RBG1 resistant (RBG1res) allele in NB presented higher activity than did that encoded by the RBG1 susceptible (RBG1sus) allele in KO. RBG1res and RBG1sus differ by three single-nucleotide polymorphisms (SNPs), and the G390T substitution is essential for kinase activity. Abscisic acid (ABA) treatment of inoculated seedlings of RBG1res-NIL (a near-isogenic line (NIL) expressing RBG1res in the KO genetic background) decreased BSR resistance, indicating that RBG1res conferred resistance to B. glumae through negative regulation of ABA. The results of further inoculation assays showed that RBG1res-NIL was also resistant to Burkholderia plantarii. Our findings suggest that RBG1res contributes to resistance to these bacterial pathogens at the seed germination stage via a unique mechanism.


Assuntos
Burkholderia , Oryza , Oryza/genética , Oryza/microbiologia , Ácido Abscísico/farmacologia , Burkholderia/genética , Locos de Características Quantitativas , Alelos
9.
Microb Ecol ; 64(1): 214-25, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22314388

RESUMO

The specificity of culturable bacteria on healthy and Fusarium head blight (FHB)-infected spikelets of wheat heads was investigated to find a candidate of biocontrol agents against FHB. The bacterial genus Pseudomonas was commonly isolated from the tissues, and phylogenetic analysis using 16S ribosomal RNA gene sequences of isolates of the genera revealed that particular phylogenetic groups in the genus specifically inhabited either healthy or infected spikelet tissues. The specificity of each group was suggested to be due to differences in the ability to form biofilms and colonize spikelet tissues; isolates originated from healthy spikelets formed biofilms on polyvinyl chloride microplate wells and highly colonized the spikelet tissues. Other bacterial groups obtained from FHB-infected spikelets less formed biofilms and attached with low densities on the spikelet tissues. Their colonization on the tissues, however, was promoted when co-inoculated with the causal pathogenic fungus, Fusarium graminearum, and several isolates were observed to smash the mycelia in vivo. Moreover, based on results of in vitro mycelial growth inhibition activity, the diseased tissue-originated isolates were verified to have a negative effect on the fungal growth. These results suggest that Pseudomonas isolates obtained from infected spikelet tissues were highly associated with the FHB pathogen and have potential as candidates for biological control against FHB.


Assuntos
Fusarium/fisiologia , Doenças das Plantas/microbiologia , Pseudomonas/isolamento & purificação , Triticum/microbiologia , Antibiose , Biofilmes , Flores/crescimento & desenvolvimento , Flores/microbiologia , Dados de Sequência Molecular , Controle Biológico de Vetores , Filogenia , Doenças das Plantas/prevenção & controle , Pseudomonas/classificação , Pseudomonas/genética , Pseudomonas/fisiologia , Especificidade da Espécie , Triticum/crescimento & desenvolvimento
10.
Appl Microbiol Biotechnol ; 96(4): 1059-70, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22322873

RESUMO

Deoxynivalenol (DON) is a hazardous and globally prevalent mycotoxin in cereals. It commonly accumulates in the grain of wheat, barley and other small grain cereals affected by Fusarium head blight (caused by several Fusarium species). The concept of reducing DON in naturally contaminated grain of wheat or barley using a DON-degrading bacterium is promising but has not been accomplished. In this study, we isolated a novel DON-utilising actinomycete, Marmoricola sp. strain MIM116, from wheat heads through a novel isolation procedure including an in situ plant enrichment step. Strain MIM116 had background degradation activity, and the activity was enhanced twofold by the consumption of DON. Among Tween 20, Triton X-100 and Tween 80, we selected Tween 80 as a spreading agent of strain MIM116 because it promoted DON degradation and the growth of strain MIM116 in the presence of DON. The inoculation of MIM116 cell suspension plus 0.01% Tween 80 into 1,000 harvested kernels of wheat and barley resulted in a DON decrease from approximately 3 mg kg(-1) to less than 1 mg kg(-1) of dry kernels, even when cells had only basal levels of DON-degrading activity. To the best of our knowledge, this is the first report that describes (1) the isolation of a DON-degrading bacterium from wheat heads, (2) the effects of surfactants on the biodegradation of DON and (3) the decrease of DON levels in naturally contaminated wheat and barley grain using a DON-degrading bacterium.


Assuntos
Actinomycetales/metabolismo , Fusarium/fisiologia , Hordeum/microbiologia , Micotoxinas/metabolismo , Doenças das Plantas/microbiologia , Tricotecenos/metabolismo , Triticum/microbiologia , Actinomycetales/classificação , Actinomycetales/genética , Actinomycetales/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Sementes/microbiologia
11.
Appl Microbiol Biotechnol ; 89(2): 419-27, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20857291

RESUMO

The mycotoxin deoxynivalenol (DON) causes serious problems worldwide in the production of crops such as wheat and barley because of its toxicity toward humans and livestock. A bacterial culture capable of degrading DON was obtained from soil samples collected in wheat fields using an enrichment culture procedure. The isolated bacterium, designated strain WSN05-2, completely removed 1,000 µg/mL of DON from the culture medium after incubation for 10 days. On the basis of phylogenetic studies, WSN05-2 was classified as a bacterium belonging to the genus Nocardioides. WSN05-2 showed significant growth in culture medium with DON as the sole carbon source. High-performance liquid chromatography analysis indicated the presence of a major initial metabolite of DON in the culture supernatant. The metabolite was identified as 3-epi-deoxynivalenol (3-epi-DON) by mass spectrometry and (1)H and (13)C nuclear magnetic resonance analysis. The amount of DON on wheat grain was reduced by about 90% at 7 days after inoculation with WSN05-2. This is the first report of a Nocardioides sp. strain able to degrade DON and of the yet unknown 3-epi-DON as an intermediate in the degradation of DON by a microorganism.


Assuntos
Actinomycetales/isolamento & purificação , Actinomycetales/metabolismo , Micotoxinas/metabolismo , Microbiologia do Solo , Tricotecenos/metabolismo , Triticum/microbiologia , Actinomycetales/classificação , Actinomycetales/genética , Biodegradação Ambiental , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Espectrometria de Massas , Dados de Sequência Molecular , Micotoxinas/análogos & derivados , Filogenia , Tricotecenos/química
12.
Can J Microbiol ; 57(1): 62-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21217798

RESUMO

The phyllosphere is one of the most common habitats for terrestrial bacteria. However, little is known about the populations of bacteria, including unculturable bacteria, that thrive on plant surfaces. Here, we developed a fluorescent nuclear staining technique to easily and rapidly observe and enumerate populations of total and living epiphytic bacteria, with particular emphasis on the concentration by centrifugation and fixation of the epiphytic bacteria. An investigation on the optimal conditions for centrifugation and fixation revealed that centrifugation at 20 400g for 2 min and fixation with 0.5% glutaraldehyde solution were the optimum conditions for observation of the bacteria. Using this technique, we assessed the populations of the total and living bacteria on the surface of rice plants. When epiphytic bacteria were recovered from rice seeds (Oryza sativa 'Koshihikari'), the number of total and living bacterial cells was 7.36 and 6.85 log10·g⁻¹ (fresh mass) in the seed washing, respectively. In contrast, the numbers of total and living bacterial cells in the leaf sheath washings were 5.5-5.8 and 5.3-5.7 log10·g⁻¹, respectively. Approximately 5%-30% of the total bacteria in the washing solution of rice plant were culturable. The usefulness of the enumeration method and the amount of bacteria on the plant surfaces are discussed.


Assuntos
Carga Bacteriana/métodos , Fenômenos Fisiológicos Bacterianos , Oryza/microbiologia , Folhas de Planta/microbiologia , Sementes/microbiologia
13.
Microorganisms ; 9(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34683377

RESUMO

Microbial diversity in an apple orchard cultivated with natural farming practices for over 30 years was compared with conventionally farmed orchards to analyze differences in disease suppression. In this long-term naturally farmed orchard, major apple diseases were more severe than in conventional orchards but milder than in a short-term natural farming orchard. Among major fungal species in the phyllosphere, we found that Aureobasidium pullulans and Cryptococcus victoriae were significantly less abundant in long-term natural farming, while Cladosporium tenuissimum predominated. However, diversity of fungal species in the phyllosphere was not necessarily the main determinant in the disease suppression observed in natural farming; instead, the maintenance of a balanced, constant selection of fungal species under a suitable predominant species such as C. tenuissimum seemed to be the important factors. Analysis of bacteria in the phyllosphere revealed Pseudomonas graminis, a potential inducer of plant defenses, predominated in long-term natural farming in August. Rhizosphere metagenome analysis showed that Cordyceps and Arthrobotrys, fungal genera are known to include insect- or nematode-infecting species, were found only in long-term natural farming. Among soil bacteria, the genus Nitrospira was most abundant, and its level in long-term natural farming was more than double that in the conventionally farmed orchard.

14.
Microbes Environ ; 35(3)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32893195

RESUMO

Microbial community structures associated with halophytes and their compositions among different habitats, particularly natural saline sites, have not yet been investigated in detail. In the present study, we examined the diversity and composition of the rhizosphere and root endosphere bacteria of two halophytes, Salicornia europaea L. and Glaux maritima L., collected from two adjacent brackish lakes, Lake Notoro and Lake Tofutsu, in Japan. The bacterial species richness and diversity indices of the two halophytes collected from both lakes showed no significant differences in the rhizosphere or root endosphere. In contrast, beta diversity and taxonomic analyses revealed significant differences in the bacterial communities from each halophyte between the two lakes even though the two locations were natural saline sites, indicating that the bacterial communities for S. europaea and G. maritima both fluctuated in a manner that depended on the geographical location. Common and abundant genera associated with each halophyte across the two lakes were then identified to verify the bacterial genera specifically inhabiting each plant species. The results obtained showed that the composition of abundant genera inhabiting each halophyte across two lakes was distinct from that reported previously in other saline soil areas. These results suggest that each halophyte in different geographical sites had an individual complex bacterial community.


Assuntos
Lagos/microbiologia , Microbiota , Rizosfera , Plantas Tolerantes a Sal/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Chenopodiaceae/microbiologia , Japão , Lagos/química , Filogeografia , Raízes de Plantas/microbiologia , Primulaceae/microbiologia , RNA Ribossômico 16S/genética
15.
Toxins (Basel) ; 12(6)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560237

RESUMO

Fusarium head blight (FHB) of cereals is a severe disease caused by the Fusarium graminearum species complex. It leads to the accumulation of the mycotoxin deoxynivalenol (DON) in grains and other plant tissues and causes substantial economic losses throughout the world. DON is one of the most troublesome mycotoxins because it is a virulence factor to host plants, including wheat, and exhibits toxicity to plants and animals. To control both FHB and DON accumulation, a biological control approach using DON-degrading bacteria (DDBs) is promising. Here, we performed a disease control assay using an in vitro petri dish test composed of germinated wheat seeds inoculated with F. graminearum (Fg) and DDBs. Determination of both grown leaf lengths and hyphal lesion lengths as a measure of disease severity showed that the inoculation of seeds with the DDBs Devosia sp. strain NKJ1 and Nocardioides spp. strains SS3 or SS4 were protective against the leaf growth inhibition caused by Fg. Furthermore, it was as effective against DON accumulation. The inoculation with strains SS3 or SS4 also reduced the inhibitory effect on leaves treated with 10 µg mL-1 DON solution (without Fg). These results indicate that the DDBs partially suppress the disease by degrading DON.


Assuntos
Grão Comestível/microbiologia , Fusarium/metabolismo , Nocardioides/metabolismo , Controle Biológico de Vetores , Doenças das Plantas/prevenção & controle , Tricotecenos/metabolismo , Triticum/microbiologia , Germinação , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Sementes/microbiologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-30863825

RESUMO

Actinomycete Nocardioides sp. strain LS1, isolated from wheat leaf, is a bacterium that degrades and assimilates the mycotoxin deoxynivalenol (DON) as the carbon source. This is the first study of the genome sequence of the DON-degrading genus Nocardioides, and it facilitates the study of genes encoding the DON-degrading pathway.

17.
Front Microbiol ; 9: 2878, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555434

RESUMO

Root-associated microbial communities are very important in the adaptation of halophytes to coastal environments. However, little has been reported on microbial community structures related to halophytes, or on comparisons of their compositions among halophytic plant species. Here, we studied the diversity and community structure of both rhizosphere and root endosphere bacteria in two halophytic plants: Glaux maritima and Salicornia europaea. We sampled the rhizosphere, the root endosphere, and bulk control soil samples, and performed bacterial 16S rRNA sequencing using the Illumina MiSeq platform to characterize the bacterial community diversities in the rhizosphere and root endosphere of both halophytes. Among the G. maritima samples, the richness and diversity of bacteria in the rhizosphere were higher than those in the root endosphere but were lower than those of the bulk soil. In contrast for S. europaea, the bulk soil, the rhizosphere, and the root endosphere all had similar bacterial richness and diversity. The number of unique operational taxonomic units within the root endosphere, the rhizosphere, and the bulk soil were 181, 366, and 924 in G. maritima and 126, 416, and 596 in S. europaea, respectively, implying habitat-specific patterns for each halophyte. In total, 35 phyla and 566 genera were identified. The dominant phyla across all samples were Proteobacteria and Bacteroidetes. Actinobacteria was extremely abundant in the root endosphere from G. maritima. Beneficial bacterial genera were enriched in the root endosphere and rhizosphere in both halophytes. Rhizobium, Actinoplanes, and Marinomonas were highly abundant in G. maritima, whereas Sulfurimonas and Coleofasciculus were highly abundant in S. europaea. A principal coordinate analysis demonstrated significant differences in the microbiota composition associated with the plant species and type of sample. These results strongly indicate that there are clear differences in bacterial community structure and diversity between G. maritima and S. europaea. This is the first report to characterize the root microbiome of G. maritima, and to compare the diversity and community structure of rhizosphere and root endosphere bacteria between G. maritima and S. europaea.

18.
J Photochem Photobiol B ; 167: 168-175, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28068611

RESUMO

Microbes inhabiting the phyllosphere encounter harmful ultraviolet rays, and must develop adaptive strategies against this irradiation. In this study, we screened bacterial isolates originating from the phyllosphere of various plants which harbored absorbers of ultraviolet A (UVA), a wavelength range which is recognized as harmful to human skin. Of the 200 phyllosphere bacterial isolates we screened, methanol extracts from bacterial cells of seventeen isolates absorbed wavelengths in the range of 315-400nm. All of the UVA-absorbing strains belonged to Methylobacterium species based on 16S ribosomal RNA gene sequences, suggesting that cells of this bacterial genus contain specific UVA-absorbing compounds. When cells of a representative Methylobacterium strain were extracted using various solvents, UVA absorption was observed in the extracts obtained using several aqueous solvents, indicating that the UVA-absorbing compounds were highly polar. A compound was purified using solid columns and HPLC separation, and comparative analysis revealed that the absorption strength and spectrum of the compound were similar to those of the known UVA filter, avobenzone. The compound was also verified to be stable under UVA exposure for at least 480min. Based on these results, the UVA-absorbing compound harbored by Methylobacterium has potential to be used as a novel sunscreen ingredient.


Assuntos
Methylobacterium/química , Propiofenonas/farmacologia , Raios Ultravioleta , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Filogenia , Folhas de Planta/microbiologia , Protetores Solares/farmacologia
19.
Rice (N Y) ; 9(1): 23, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27178300

RESUMO

In rice (Oryza sativa L.), damage from diseases such as brown spot, caused by Bipolaris oryzae, and bacterial seedling rot and bacterial grain rot, caused by Burkholderia glumae, has increased under global warming because the optimal temperature ranges for growth of these pathogens are relatively high (around 30 °C). Therefore, the need for cultivars carrying genes for resistance to these diseases is increasing to ensure sustainable rice production. In contrast to the situation for other important rice diseases such as blast and bacterial blight, no genes for complete resistance to brown spot, bacterial seedling rot or bacterial grain rot have yet been discovered. Thus, rice breeders have to use partial resistance, which is largely influenced by environmental conditions. Recent progress in molecular genetics and improvement of evaluation methods for disease resistance have facilitated detection of quantitative trait loci (QTLs) associated with resistance. In this review, we summarize the results of worldwide screening for cultivars with resistance to brown spot, bacterial seedling rot and bacterial grain rot and we discuss the identification of QTLs conferring resistance to these diseases in order to provide useful information for rice breeding programs.

20.
Mol Biotechnol ; 58(10): 626-633, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27389682

RESUMO

The ascomycete fungus Mycosphaerella polygoni-cuspidati has been undergoing evaluation as a potential classical biological control agent for the invasive weed Fallopia japonica (Japanese knotweed), which has become troublesome in Europe and North America. In advance of the potential release of a biocontrol agent into a new environment, it is crucial to develop an effective monitoring system to enable the evaluation of agent establishment and dispersal within the target host population, as well as any potential attacks on non-target species. Therefore, a primer pair was designed for direct, rapid, and specific detection of the Japanese knotweed pathogen M. polygoni-cuspidati based on the sequences of the internal transcribed spacer regions including the 5.8S rDNA. A PCR product of approximately 298 bp was obtained only when the DNA extracted from mycelial fragments of M. polygoni-cuspidati was used. The lower limit of detection of the PCR method was 100 fg of genomic DNA. Using the specific primer pair, M. polygoni-cuspidati could be detected from both naturally and artificially infected Japanese knotweed plants. No amplification was observed for other Mycosphaerella spp. or fungal endophytes isolated from F. japonica. The designed primer pair is thus effective for the specific detection of M. polygoni-cuspidati in planta.


Assuntos
Ascomicetos/genética , Primers do DNA/genética , Fallopia japonica/microbiologia , Reação em Cadeia da Polimerase/métodos , Ascomicetos/isolamento & purificação , Ascomicetos/fisiologia , Agentes de Controle Biológico/análise , Agentes de Controle Biológico/farmacologia , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Limite de Detecção , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA