Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 13(4): 2495-506, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23763123

RESUMO

In this study, we synthesized poly(ethylene oxide-b-L-lactide) (PEO-PLLA) diblock copolymers and poly(ethylene-b-ethylene oxide-b-L-lactide) (PE-PEO-PLLA) triblock terpolymers as templates for the preparation of mesoporous lamellar silicas, possessing single, bimodal, or trimodal pore size distributions, through an evaporation-induced self-assembly (EISA) approach. As templates, we synthesized the diblock copolymers EO114LLA26 and EO114LLA130 and the triblock terpolymers E13EO42LLA26 and E13EO42LLA35 using simple ring-opening polymerization. Small-angle X-ray scattering, transmission electron microscopy, and N2 sorption measurements revealed that the mesoporous silicas displayed the morphologies of either lamellar silica walls featuring a distribution of many short cylindrical mesopores or pure lamellar structures. The morphology was greatly affected by the nature of the template (diblock or triblock copolymer) and the molecular weight of the PLLA segment in the block copolymer.

2.
Polymers (Basel) ; 14(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35267769

RESUMO

Applications of cellulose nanofibers currently match the demands of biodegradable and renewable constituent biocomposites. In this study, we studied the process of preparing TEMPO-oxidized cellulose nanofibers (TOCNs). These nano-sized cellulose fibers (ca. 11 nm) can be fabricated to high transmittance and optically transparent paper (OP) films. Then the OP films can be facilely immobilized initiating sites for the subsequent surface-initiated atom transfer radical polymerization (SI ATRP). We investigated SI ATRP with styrene (St) kinetics and monitored chemical structure changes of the OP surfaces. The obtained OP-g-PSt significantly led to enhance thermal stability and alter the OP surface with hydrophobic compared to that of pristine OP film. Characterization was studied by Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), UV-Vis spectroscopy, thermogravimetric analyzer (TGA), and water contact angle (WCA) measurements.

3.
Nanomaterials (Basel) ; 11(9)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34578713

RESUMO

Reversible-deactivation radical polymerization (RDRP) serves as a powerful tool nowadays for the preparations of unique linear and non-linear macromolecules. In this study, enhanced spin capturing polymerizations (ESCPs) of styrene (St) and tert-butyl acrylate (tBA) monomers were, respectively, conducted in the presence of difunctional (1Z,1'Z)-1,1'-(1,4-phenylene) bis (N-tert-butylmethanimine oxide) (PBBN) nitrone. Four-arm (PSt)4 and (PtBA)4 star macroinitiators (MIs) can be afforded. By correspondingly switching the second monomer (i.e., tBA and St), miktoarm star copolymers (µ-stars) of (PSt)2-µ-(PtBA-b-PSt)2 and (PtBA)2-µ-(PSt-b-PtBA)2) were thus obtained. We further conducted hydrolysis of the PtBA segments to PAA (i.e., poly(acrylic acid)) in µ-stars to afford amphiphilic µ-stars of (PSt)2-µ-(PAA-b-PSt)2 and (PAA)2-µ-(PSt-b-PAA)2. We investigated each polymerization step and characterized the obtained two sets of "sequence-isomeric" µ-stars by FT-IR, 1H NMR, differential scanning calorimeter (DSC), and thermogravimetric analysis (TGA). Interestingly, we identified their physical property differences in the case of amphiphilic µ-stars by water contact angle (WCA) and atomic force microscopy (AFM) measurements. We thus proposed two microstructures caused by the difference of polymer chain sequences. Through this polymerization transformation (T) approach (i.e., ESCP-T-NMP), we demonstrated an interesting and facile strategy for the preparations of µ-stars with adjustable/switchable interior and exterior polymer structures toward the preparations of various nanomaterials.

4.
Food Sci Nutr ; 8(7): 3515-3524, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32724614

RESUMO

BACKGROUND/AIM: Nobiletin is a polymethoxylated flavone enriched in Citrus and is used as an important drug in traditional Chinese medicine for various kinds of diseases. Among its multiple functions, it has shown that nobiletin inhibits proliferation of various cancer cells. However, it is unclear whether nobiletin inhibits the growth of oral squamous cell carcinoma (OSCC) cells. MATERIALS AND METHODS: We explored the antitumor effects of nobiletin in TCA-8113 and CAL-27 oral squamous cells. The Cell Counting Kit-8 (CCK8) assay was used to measure cell vitality. Flow cytometry was performed to measure the number of cells in the various phases of the cell cycle. PCR and Western blot were applied to determine mRNA and protein expression, respectively. RESULTS: Nobiletin inhibited proliferation of TCA-8113 and CAL-27 cells via inducing cell cycle arrest at the G1 phase. In addition, the levels of phosphorylated-PKA and phosphorylated-CREB were reduced in nobiletin-treated TCA-8113 and CAL-27 cells. Importantly, our results showed that nobiletin treatment resulted in impaired mitochondrial function and altered glucose consumption, and pyruvate and lactate production. Lastly, nobiletin was found to inhibit the generation of xenografts in vivo. Interestingly, administration of 50 µmol/L Sp-cAMP, a potent PKA activator, rescued all phenotypes caused by nobiletin. CONCLUSIONS: Nobiletin inhibits OSCC cell proliferation in a mitochondria-dependent manner, indicating that it may have a promising role in cancer treatment and attenuation of drug resistance.

5.
Polymers (Basel) ; 12(12)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260522

RESUMO

To afford an intact double network (sample abbr.: DN) hydrogel, two-step crosslinking reactions of poly(2-acrylamido-2-methylpropanesulfonic acid) (i.e., PAMPS first network) and then poly(acrylic acid) (i.e., PAA second network) were conducted both in the presence of crosslinker (N,N'-methylenebisacrylamide (MBAA)). Similar to the two-step processes, different contents of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) oxidized cellulose nanofibers (TOCN: 1, 2, and 3 wt.%) were initially dispersed in the first network solutions and then crosslinked. The TOCN-containing PAMPS first networks subsequently soaked in AA and crosslinker and conducted the second network crosslinking reactions (TOCN was then abbreviated as T for DN samples). As the third step, various (T-)DN hydrogels were then treated with different concentrations of FeCl3(aq) solutions (5, 50, 100, and 200 mM). Through incorporations of ferric ions into (T-)DN hydrogels, notably, three purposes are targeted: (i) strengthen the (T-)DN hydrogels through ionic bonding, (ii) significantly render ionic conductivity of hydrogels, and (iii) serve as a catalyst for the forth step to proceed with in situ chemical oxidative polymerizations of pyrroles to afford polypyrrole-containing (sample abbr.: Py) hydrogels [i.e., (T-)Py-DN samples]. The characteristic functional groups of PAMPS, PAA, and Py were confirmed by FT-IR. Uniform microstructures were observed by cryo scanning electron microscopy (cryo-SEM). These results indicated that homogeneous composites of T-Py-DN hydrogels were obtained through the four-step process. All dry samples showed similar thermal degradation behaviors from the thermogravimetric analysis (TGA). The T2-Py5-DN sample (i.e., containing 2 wt.% TOCN with 5 mM FeCl3(aq) treatment) showed the best tensile strength and strain at breaking properties (i.e., σTb = 450 kPa and εTb = 106%). With the same compositions, a high conductivity of 3.34 × 10-3 S/cm was acquired. The tough T2-Py5-DN hydrogel displayed good conductive reversibility during several "stretching-and-releasing" cycles of 50-100-0%, demonstrating a promising candidate for bioelectronic or biomaterial applications.

6.
ACS Nano ; 14(3): 2939-2946, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32100990

RESUMO

Polymers are generally regarded as thermal insulators. The efficient heat transfer observed in the low-dimensional polymers in the literature mainly result from the larger crystallinity or improved polymer chain orientation in the low-dimensional polymers. However, the role of the amorphous domain on heat transfer in polymers remains unexplored. In this work, we report that the semicrystalline nylon polymer nanofibers can exhibit a very large thermal conductivity of 59.1 ± 3.1 W m-1 K-1 and the heat transfer in the semicrystalline polymer nanofibers was time-dependent. The thermal conductivity of the nanofibers could be modulated to span 3 orders of magnitude from being nearly insulated (∼0.27 ± 0.02 W m-1 K-1) to being highly thermal conductive after annealing (∼59.1 ± 3.1 W m-1 K-1). The time-dependent thermal conductivity was observed at a temperature lower than the gamma transition temperature of the polymer and was a result of the physical aging of the semicrystalline polymer. A phenomenological model was adopted to explain the time-dependent heat transfer of the semicrystalline nanofibers. The physical aging reduced the configuration disorder in the polymer and caused the heat transfer of the semicrystalline polymer to increase during the annealing process.

7.
Polymers (Basel) ; 11(10)2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31600916

RESUMO

An effective method of oxidation from paper pulps via 2,2,6,6-tetramethylpiperidine-1-oxy (TEMPO) compound to obtain TEMPO-oxidized cellulose nanofibers (TOCNs) was demonstrated. Following by acylation, TOCN having an atom transfer radical polymerization (ATRP) initiating site of bromoisobutyryl moiety (i.e., TOCN-Br) was successfully obtained. Through a facile and practical technique of surface-initiated initiators for continuous activator regeneration atom transfer radical polymerization (SI ICAR ATRP) of methyl methacrylate (MMA) from TOCN-Br, controllable grafting polymer chain lengths (Mn = ca. 10k-30k g/mol) with low polydispersity (PDI < 1.2) can be achieved to afford TOCN-g-Poly(methyl methacrylate) (PMMA) nanomaterials. These modifications were monitored by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), electron spectroscopy for chemical analysis (ESCA), and water contact angle analysis. Eventually, TOCN-g-PMMA/PMMA composites were prepared using the solvent blending method. Compared to the pristine PMMA (Tg = 100 °C; tensile strength (σT) = 17.1 MPa), the composites possessed high transparency with enhanced thermal properties and high tensile strength (Tg = 110 °C and σT = 37.2 MPa in 1 wt% TOCN containing case) that were investigated by ultraviolet-visible spectroscopy (UV-Vis), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), and tensile tests. We demonstrated that minor amounts of TOCN-g-PMMA nanofillers can provide high efficacy in improving the mechanical and thermal properties of PMMA matrix.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA