Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 727
Filtrar
1.
Chembiochem ; : e202400269, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923255

RESUMO

The human malaria parasite Plasmodium falciparum (P. falciparum) continues to pose a significant public health challenge, leading to millions of fatalities globally. Halofuginone (HF) has shown a significant anti-P. falciparum effect, suggesting its potential as a therapeutic agent for malaria treatment. In this study, we synthesized a photoaffinity labeling probe of HF to identify its direct target in P. falciparum. Our results reveal that ubiquitin carboxyl-terminal hydrolase 3 (PfUCHL3) acts as a crucial target protein of HF, which modulates parasite growth in the intraerythrocytic cycle. In particular, we discovered that HF potentially forms hydrogen bonds with the Leu10, Glu11, and Arg217 sites of PfUCHL3, thereby inducing an allosteric effect by promoting the embedding of the helix 6' region on the protein surface. Furthermore, HF disrupts the expression of multiple functional proteins mediated by PfUCHL3, specifically those that play crucial roles in amino acid biosynthesis and metabolism in P. falciparum. Taken together, this study highlights PfUCHL3 as a previously undisclosed druggable target of HF, which contributes to the development of novel anti-malarial agents in the future.

2.
Inflamm Res ; 73(3): 345-362, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38157008

RESUMO

OBJECTIVES: Colitis is a global disease usually accompanied by intestinal epithelial damage and intestinal inflammation, and an increasing number of studies have found natural products to be highly effective in treating colitis. Anemoside B4 (AB4), an abundant saponin isolated from Pulsatilla chinensis (Bunge), which was found to have strong anti-inflammatory activity. However, the exact molecular mechanisms and direct targets of AB4 in the treatment of colitis remain to be discovered. METHODS: The anti-inflammatory activities of AB4 were verified in LPS-induced cell models and 2, 4, 6-trinitrobenzene sulfonic (TNBS) or dextran sulfate sodium (DSS)-induced colitis mice and rat models. The molecular target of AB4 was identified by affinity chromatography analysis using chemical probes derived from AB4. Experiments including proteomics, molecular docking, biotin pull-down, surface plasmon resonance (SPR), and cellular thermal shift assay (CETSA) were used to confirm the binding of AB4 to its molecular target. Overexpression of pyruvate carboxylase (PC) and PC agonist were used to study the effects of PC on the anti-inflammatory and metabolic regulation of AB4 in vitro and in vivo. RESULTS: AB4 not only significantly inhibited LPS-induced NF-κB activation and increased ROS levels in THP-1 cells, but also suppressed TNBS/DSS-induced colonic inflammation in mice and rats. The molecular target of AB4 was identified as PC, a key enzyme related to fatty acid, amino acid and tricarboxylic acid (TCA) cycle. We next demonstrated that AB4 specifically bound to the His879 site of PC and altered the protein's spatial conformation, thereby affecting the enzymatic activity of PC. LPS activated NF-κB pathway and increased PC activity, which caused metabolic reprogramming, while AB4 reversed this phenomenon by inhibiting the PC activity. In vivo studies showed that diisopropylamine dichloroacetate (DADA), a PC agonist, eliminated the therapeutic effects of AB4 by changing the metabolic rearrangement of intestinal tissues in colitis mice. CONCLUSION: We identified PC as a direct cellular target of AB4 in the modulation of inflammation, especially colitis. Moreover, PC/pyruvate metabolism/NF-κB is crucial for LPS-driven inflammation and oxidative stress. These findings shed more light on the possibilities of PC as a potential new target for treating colitis.


Assuntos
Colite , Saponinas , Ratos , Camundongos , Animais , Piruvato Carboxilase/metabolismo , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Inflamação/metabolismo , Saponinas/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Macrófagos/metabolismo , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
3.
Inorg Chem ; 63(15): 6854-6870, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564370

RESUMO

The issue of catalyst deactivation due to sintering has gained significant attention alongside the rapid advancement of thermal catalysts. In this work, a simple Sr modification strategy was applied to achieve highly active Co3O4-based nanocatalyst for catalytic combustion of hydrocarbons with excellent antisintering feature. With the Co1Sr0.3 catalyst achieving a 90% propane conversion temperature (T90) of only 289 °C at a w8 hly space velocity of 60,000 mL·g-1·h-1, 24 °C lower than that of pure Co3O4. Moreover, the sintering resistance of Co3O4 catalysts was greatly improved by SrCO3 modification, and the T90 over Co1Sr0.3 just increased from 289 to 337 °C after thermal aging at 750 °C for 100 h, while that over pure Co3O4 catalysts increased from 313 to 412 °C. Through strontium modification, a certain amount of SrCO3 was introduced on the Co3O4 catalyst, which can serve as a physical barrier during the thermal aging process and further formation of Sr-Co perovskite nanocrystals, thus preventing the aggregation growth of Co3O4 nanocrystals and generating new active SrCoO2.52-Co3O4 heterointerface. In addition, propane durability tests of the Co1Sr0.3 catalysts showed strong water vapor resistance and stability, as well as excellent low-temperature activity and resistance to sintering in the oxidation reactions of other typical hydrocarbons such as toluene and propylene. This study provides a general strategy for achieving thermal catalysts by perfectly combining both highly low-temperature activity and sintering resistance, which will have great significance in practical applications for replacing precious materials with comparative features.

4.
Biomed Chromatogr ; 38(4): e5829, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351664

RESUMO

The imbalance of steroid hormones is closely related to the occurrence and development of hepatocellular carcinoma (HCC). However, most research has focused on steroid hormone receptors, and reports about the relationship between the serum concentration of cortisol and the development of HCC are rare. The aim of this research was to establish a simple, specific, sensitive and reliable liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) method for the quantitation of cortisol in human serum and to compare the level of cortisol in serum between 221 HCC patients and 183 healthy volunteers. The results showed that the correlation coefficients of the linear regression with a weighing factor of 1/x2 ranged from 0.9933 to 0.9984 over the range of 2-1,000 ng/ml. The inter- and intra-day precision and accuracy were <10%. The matrix effect and recovery of cortisol were 94.9-102.5% and 96.3-99.8%, respectively. The concentration of cortisol in HCC patients was significantly higher than that in healthy volunteers (p < 0.05) and was not affected by sex, age, menopause or α-fetoprotein (AFP) level. The present study reveals that elevated cortisol might promote the progression of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Feminino , Humanos , Hidrocortisona , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massa com Cromatografia Líquida , Esteroides
5.
Chem Biodivers ; 21(3): e202301631, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38205915

RESUMO

Two undescribed protostane triterpenoids, 11-deoxy-13(17),15-dehydro-alisol B 23-acetate (2) and alisol S (3), together with 21 known ones (1, 4-23), were isolated from the dried rhizome of Alisma plantago-aquatica. Of these compounds, 13(17),15-Dehydro-alisol B 23-acetate (1) and 11-deoxy-13(17),15-dehydro-alisol B 23-acetate (2) are two protostane triterpenoids containing conjugated double bonds in the five-membered ring D that are rarely found from nature resource, while alisol S (3) is a protostane triterpenoid with undescribed tetrahydrofuran moiety linked via C20 -O-C24 at the side chain. Additionally, compound 18 is a new natural product, and cycloartenol triterpenoid 23 is a non protostane triterpenoid firstly isolated from genus Alisma. Their structures were elucidated by extensive spectral analysis of the UV, IR, MS, 1D and 2D NMR, and comparison of the experimental and calculated CD curves.


Assuntos
Alisma , Triterpenos , Alisma/química , Rizoma/química , Triterpenos/química , Extratos Vegetais/química , Espectroscopia de Ressonância Magnética
6.
J Asian Nat Prod Res ; 26(6): 747-755, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38379373

RESUMO

An unprescribed nortriterpenoid with an aromatic E ring, uncanortriterpenoid A (1), together with fourteen known triterpenoids (2-15), were isolated from the hook-bearing stems of Uncaria rhynchophylla Miq. Based on extensive spectroscopic analyses, the NMR data of 2, 5, and 10 in CD3OD were assigned for the first time, and the wrongly assigned δC of C-27 and C-29 of 2 were revised. Among the known compounds, 7, 13, and 15 were isolated from this species for the first time, and 15 represents the first lanostane triterpenoid bearing an extra methylidene at C-24 for the Rubiaceae family. Additionally, compounds 6 and 14 exhibited moderate ferroptosis inhibitory activity, with an EC50 value of 14.74 ± 0.20 µM for 6 and 23.11 ± 1.31 µM for 14.


Assuntos
Caules de Planta , Triterpenos , Uncaria , Uncaria/química , Triterpenos/química , Triterpenos/farmacologia , Triterpenos/isolamento & purificação , Caules de Planta/química , Estrutura Molecular , Humanos
7.
Small ; 19(9): e2205531, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36549896

RESUMO

Understanding the direct interaction of nanostructures per se with biological systems is important for biomedical applications. However, whether nanostructures regulate biological systems by targeting specific cellular proteins remains largely unknown. In the present work, self-assembling nanomicelles are constructed using small-molecule oleanolic acid (OA) as a molecular template. Unexpectedly, without modifications by functional ligands, OA nanomicelles significantly activate cellular proteasome function by directly binding to 20S proteasome subunit alpha 6 (PSMA6). Mechanism study reveals that OA nanomicelles interact with PSMA6 to dynamically modulate its N-terminal domain conformation change, thereby controlling the entry of proteins into 20S proteasome. Subsequently, OA nanomicelles accelerate the degradation of several crucial proteins, thus potently driving cancer cell pyroptosis. For translational medicine, OA nanomicelles exhibit a significant anticancer potential in tumor-bearing mouse models and stimulate immune cell infiltration. Collectively, this proof-of-concept study advances the mechanical understanding of nanostructure-guided biological effects via their inherent capacity to activate proteasome.


Assuntos
Nanoestruturas , Neoplasias , Animais , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Piroptose , Citoplasma/metabolismo , Micelas , Nanoestruturas/química
8.
J Org Chem ; 88(11): 7096-7103, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37178146

RESUMO

Three quinone-terpenoid alkaloids, alashanines A-C (1-3), possessing an unprecedented 6/6/6 tricyclic conjugated backbone and quinone-quinoline-fused characteristic, were isolated from the peeled stems of Syringa pinnatifolia. Their structures were elucidated by analysis of extensive spectroscopic data and quantum chemical calculations. A hypothesis of biosynthesis pathways for 1-3 was proposed on the basis of the potential precursor iridoid and benzoquinone. Compound 1 exhibited antibacterial activities against Bacillus subtilis and cytotoxicity against HepG2 and MCF-7 human cancer cell lines. The results of the cytotoxic mechanism revealed that compound 1 induced apoptosis of HepG2 cells through activation of ERK.


Assuntos
Alcaloides , Antineoplásicos , Syringa , Humanos , Syringa/química , Terpenos , Estrutura Molecular , Extratos Vegetais , Alcaloides/farmacologia , Benzoquinonas , Quinonas
9.
Bioorg Chem ; 133: 106396, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36758274

RESUMO

Six previously unprecedented 2-(2-phenylethyl)chromone-sesquiterpene hybrids, aquisinenins A-F (1 - 6), were isolated from the resinous wood of Aquilaria sinensis by a LC-MS-guided fractionation procedure. Their structures were determined by extensive spectroscopic analysis (1D and 2D NMR, UV, IR, and HRMS) and experimental and computed ECD data. Compounds 1 - 6 were rare dimeric 2-(2-phenylethyl)chromone-sesquiterpene derivatives featuring 5,6,7,8-tetrahydro-2-(2-phenylethyl)chromone hybridized with different sesquiterpene (eudesmane/guaiane type) moieties via ester bond. Furthermore, all the isolated compounds were evaluated for their protective effects on taurocholic acid (TCA)-induced GES-1 cell injury. The most effective aquisinenin F (6) was used to elucidate the involved mechanism on protection against TCA-induced gastric mucosal damage. Our results indicated that 6 protected against gastric mucosal cell insult by downregulation of the ER stress triggered by TCA.


Assuntos
Sesquiterpenos , Thymelaeaceae , Cromonas , Madeira/química , Flavonoides/química , Thymelaeaceae/química , Resinas Vegetais , Estrutura Molecular
10.
Phytother Res ; 37(2): 689-701, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36245270

RESUMO

Gastric cancer (GC) is a malignancy with high morbidity and mortality. Chinese dragon's blood is a traditional Chinese medicine derived from the red resin of Dracaena cochinchinensis (Lour.) S. C. Chen. However, the antigastric cancer effect of Chinese dragon's blood has not yet been reported. Herein, we demonstrated that Chinese dragon's blood ethyl acetate extract (CDBEE) suppressed the proliferative and metastatic potential of human gastric cancer MGC-803 and HGC-27 cells. CDBEE suppressed epithelial-mesenchymal transition in MGC-803 and HGC-27 cells. Moreover, CDBEE induced apoptotic and autophagic cell death in MGC-803 and HGC-27 cells. The cytotoxicity of CDBEE in human gastric epithelial GES-1 cells was dramatically weaker than that in human gastric cancer cells. Mechanistically, the activation of the mitogen-activated protein kinase (MAPK) signalling pathway was involved in the growth inhibition of MGC-803 and HGC-27 cells by CDBEE. Additionally, CDBEE-induced autophagic cell death was mediated by downregulation of the mammalian target of rapamycin (mTOR)-Beclin1 signalling cascade and upregulation of the ATG3/ATG7-LC3 signalling cascade. Importantly, CDBEE exhibited potent anti-GC efficacy in vivo without obvious toxicity or side effects. Therefore, CDBEE may be a promising candidate drug for the treatment of gastric cancer, especially for GC patients with aberrant MAPK signalling or mTOR signalling.


Assuntos
Dracaena , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Proteína Beclina-1/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Sirolimo , Regulação para Baixo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Dracaena/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Autofagia
11.
Chem Biodivers ; 20(12): e202301600, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37963833

RESUMO

Four previously undescribed diastereomeric lignan glycosides, namely cistadesertosides B-E (1-4) were isolated from the stems of cultural Cistanche deserticola in Tarim desert. The structures of these compounds were elucidated on the basis of extensive spectroscopic analyses, including IR, HR-ESI-MS, 1D and 2D NMR, circular dichroism (CD) data and chemical degradation. The in vitro anti-inflammatory activity of the isolates was also investigated. It showed that compounds 3 and 4 exhibited potential effects with IC50 values of 21.17 µM and 26.97 µM, respectively (positive control quercetin, IC50 , 10.01 µM).


Assuntos
Cistanche , Lignanas , Glicosídeos/farmacologia , Glicosídeos/química , Lignanas/farmacologia , Lignanas/química , Cistanche/química , Extratos Vegetais/química , Anti-Inflamatórios
12.
Molecules ; 28(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37375356

RESUMO

As a first-line agent for cholestasis treatment in a clinic, ursodeoxycholic acid rectifies the perturbed bile acids (BAs) submetabolome in a holistic manner. Considering the endogenous distribution of ursodeoxycholic acid and extensive occurrences of isomeric metabolites, it is challenging to point out whether a given bile acid species is impacted by ursodeoxycholic acid in a direct or indirect manner, thus hindering the therapeutic mechanism clarification. Here, an in-depth exploration of the metabolism pattern of ursodeoxycholic acid was attempted. Sequential metabolism in vitro with enzyme-enriched liver microsomes was implemented to simulate the step-wise metabolism and to capture the metabolically labile intermediates in the absence of endogenous BAs. Squared energy-resolved mass spectrometry (ER2-MS) was utilized to achieve isomeric identification of the conjugated metabolites. As a result, 20 metabolites (M1-M20) in total were observed and confirmatively identified. Of those, eight metabolites were generated by hydroxylation, oxidation, and epimerization, which were further metabolized to nine glucuronides and three sulfates by uridine diphosphate-glycosyltransferases and sulfotransferases, respectively. Regarding a given phase II metabolite, the conjugation sites were correlated with first-generation breakdown graphs corresponding to the linkage fission mediated by collision-induced dissociation, and the structural nuclei were identified by matching second-generation breakdown graphs with the known structures. Together, except for intestinal-bacteria-involved biotransformation, the current study characterized BA species directly influenced by ursodeoxycholic acid administration. Moreover, sequential metabolism in vitro should be a meaningful way of characterizing the metabolic pathways of endogenous substances, and squared energy-resolved mass spectrometry is a legitimate tool for structurally identifying phase II metabolites.


Assuntos
Ácidos e Sais Biliares , Colestase , Humanos , Ácido Ursodesoxicólico , Espectrometria de Massas , Glucuronídeos
13.
Molecules ; 28(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37446707

RESUMO

The root bark of Dictamnus dasycarpus Turcz is a traditional Chinese medicine, Dictamni Cortex (DC), which is mainly used in the clinical treatment of skin inflammation, eczema, rubella, rheumatism, and gynecological inflammation. Unexpectedly, there are some cases of liver injury after the administration of DC. However, the mechanism of hepatotoxicity remains ambiguous. The aim of this study was to explore the mechanism and substance bases of DC hepatotoxicity based on network pharmacology and molecular docking, verified through pharmacological experiments. Partial prototype components and metabolites in vivo of quinoline alkaloids from DC were selected as candidate compounds, whose targets were collected from databases. Network pharmacology was applied to study the potential hepatotoxic mechanism after correlating the targets of candidate compounds with the targets of hepatotoxicity. Molecular docking was simulated to uncover the molecular mechanism. Furthermore, the hepatotoxicity of the extract and its constituents from DC was evaluated in vivo and in vitro. We constructed the "potential toxic components-toxic target-toxic pathway" network. Our results showed that the targets of DC included CYP1A2 and GSR, participating in heterologous steroid metabolism, REDOX metabolism, drug metabolism, heterocyclic metabolic processes, the synthesis of steroid hormone, cytochrome P450 metabolism, chemical carcinogens and bile secretion pathways. In vitro and in vivo experiments displayed that DC could result in a decrease in GSH-Px and oxidative stress, simultaneously inhibiting the expression of CYP1A2 and inducing hepatotoxicity. These results further indicated the mechanism of hepatotoxicity induced by Dictamnus dasycarpus, providing a basic theory to explore and prevent hepatotoxicity in the clinical usage of Dictamnus dasycarpus.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Dictamnus , Medicamentos de Ervas Chinesas , Humanos , Dictamnus/química , Simulação de Acoplamento Molecular , Citocromo P-450 CYP1A2 , Farmacologia em Rede , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Inflamação , Medicamentos de Ervas Chinesas/farmacologia
14.
Zhongguo Zhong Yao Za Zhi ; 48(4): 993-1004, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36872270

RESUMO

Draconis Sanguis is a precious Chinese medicinal material for activating blood and resolving stasis, and its effective components are flavonoids. However, the structural diversity of flavonoids in Draconis Sanguis brings great challenges to the in-depth chara-cterization of its chemical composition profiles. To clarify the substance basis of Draconis Sanguis, ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was used in this study to acquire MS data of Draconis Sanguis. The molecular weight imprinting(MWI) and mass defect filtering(MDF) were developed for rapid screening of flavonoids in Draconis Sanguis. Full-scan MS and MS~2 were recorded within the mass range m/z 100-1 000 in positive ion mode. Accor-ding to previous literature, MWI was employed to hunt for reported flavonoids in Draconis Sanguis, and the mass tolerance range of [M+H]~+ was set as ±10×10~(-3). A five-point MDF screening frame was further constructed to narrow the screening range of flavonoids from Draconis Sanguis. Combined with diagnostic fragment ions(DFI) and neutral loss(NL) as well as mass fragmentation pathways, 70 compounds were preliminarily identified from the extract of Draconis Sanguis, including 5 flavan oxidized congeners, 12 flavans, 1 dihydrochalcones, 49 flavonoids dimers, 1 flavonoids trimer and 2 flavonoid derivatives. This study clarified the chemical composition of flavonoids in Draconis Sanguis. Moreover, it also showed that high-resolution MS combined with data post-processing methods such as MWI and MDF could achieve rapid characterization of the chemical composition in Chinese medicinal materials.


Assuntos
Flavonoides , Extratos Vegetais , Cromatografia Líquida de Alta Pressão , Tolerância Imunológica , Peso Molecular , Extratos Vegetais/química
15.
Zhongguo Zhong Yao Za Zhi ; 48(2): 336-348, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-36725223

RESUMO

As a biocatalyst, enzyme has the advantages of high catalytic efficiency, strong reaction selectivity, specific target products, mild reaction conditions, and environmental friendliness, and serves as an important tool for the synthesis of complex organic molecules. With the continuous development of gene sequencing technology, molecular biology, genetic manipulation, and other technologies, the diversity of enzymes increases steadily and the reactions that can be catalyzed are also gradually diversified. In the process of enzyme-catalyzed synthesis, the majority of common enzymatic reactions can be achieved by single enzyme catalysis, while many complex reactions often require the participation of two or more enzymes. Therefore, the combination of multiple enzymes together to construct the multi-enzyme cascade reactions has become a research hotspot in the field of biochemistry. Nowadays, the biosynthetic pathways of more natural products with complex structures have been clarified, and secondary metabolic enzymes with novel catalytic activities have been identified, discovered, and combined in enzymatic synthesis of natural/unnatural molecules with diverse structures. This study summarized a series of examples of multi-enzyme-catalyzed cascades and highlighted the application of cascade catalysis methods in the synthesis of carbohydrates, nucleosides, flavonoids, terpenes, alkaloids, and chiral molecules. Furthermore, the existing problems and solutions of multi-enzyme-catalyzed cascade method were discussed, and the future development direction was prospected.


Assuntos
Alcaloides , Produtos Biológicos , Produtos Biológicos/química , Catálise , Biocatálise
16.
Zhongguo Zhong Yao Za Zhi ; 48(2): 472-480, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-36725237

RESUMO

This study identified the anti-depression targets of Kaixin San(KXS) in the brain tissue with "target fishing" strategy, and explored the target-associated pharmacological signaling pathways to reveal the anti-depression molecular mechanism of KXS. The Balb/c mouse model of depression was established by chronic unpredictable mild stress(CUMS) and the anti-depression effect of KXS was evaluated by forced swimming test and sucrose preference test. KXS active components were bonded to the benzophenone-modified magnetic nanoparticles by photocrosslinking reaction for capturing target proteins from cortex, thalamus and hippocampus of depressive mice. The target proteins were identified by liquid chromatography-mass spectrometry/mass spectrometry(LC-MS/MS). The enrichment analysis on signaling pathways was performed by Cytoscape. The potential biological functions of targets were verified by immunohistochemistry and Western blot assay. The results showed that KXS significantly improved the behavioral indexes. There were 64, 91, and 44 potential targets of KXS identified in cortex, thalamus, and hippocampus, respectively, according to the target identification experiment. The functions of these targets were mainly associated with vasopressin-regulated water reabsorption, salmonella infection, thyroid hormone synthesis, and other signaling pathways. Besides, the results of immunohistochemistry and Western blot showed that KXS up-regulated the expressions of argipressine(AVP) in the cortex, heat shock protein 60(HSP60), cytochrome C oxidase 4(COX4), and thyrotropin-releasing hormone(TRH) in the thalamus, and down-regulated the expressions of tumor necrosis factor-α(TNF-α) and nuclear factor kappa B(NF-κB) p65 in the thalamus. Therefore, KXS may exert anti-depression effect through regulating vasopressin signaling pathway in the cortex and inflammation, energy metabolism, and thyroid hormone signaling pathways in the thalamus, and the effect of KXS on hippocampus is not significant.


Assuntos
Depressão , Medicamentos de Ervas Chinesas , Animais , Camundongos , Cromatografia Líquida , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/química , Hipocampo , Estresse Psicológico/tratamento farmacológico , Espectrometria de Massas em Tandem , Depressão/tratamento farmacológico
17.
Zhongguo Zhong Yao Za Zhi ; 48(10): 2803-2809, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37282940

RESUMO

This study aimed to explore the potentiating effect and mechanism of the extract of Jingfang Granules(JFG) on the activation of macrophages. The RAW264.7 cells were treated with JFG extract and then stimulated by multiple agents. Subsequently, mRNA was extracted, and reverse transcription-polymerase chain reaction(RT-PCR) was used to measure the mRNA transcription of multiple cytokines in RAW264.7 cells. The levels of cytokines in the cell supernatant were detected by enzyme-linked immunosorbent assay(ELISA). In addition, the intracellular proteins were extracted and the activation of signaling pathways was determined by Western blot. The results showed that JFG extract alone could not promote or slightly promote the mRNA transcription of TNF-α, IL-6, IL-1ß, MIP-1α, MCP-1, CCL5, IP-10, and IFN-ß, and significantly enhance the mRNA transcription of these cytokines in RAW264.7 cells induced by R848 and CpG in a dose-dependent manner. Furthermore, JFG extract also potentiated the secretion of TNF-α, IL-6, MCP-1, and IFN-ß by RAW264.7 cells stimulated with R848 and CpG. As revealed by mechanism analysis, JFG extract enhanced the phosphorylation of p38, ERK1/2, IRF3, STAT1, and STAT3 in RAW264.7 cells induced by CpG. The findings of this study indicate that JFG extract can selectively potentiate the activation of macrophages induced by R848 and CpG, which may be attributed to the promotion of the activation of MAPKs, IRF3, and STAT1/3 signaling pathways.


Assuntos
Interleucina-6 , Fator de Necrose Tumoral alfa , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Citocinas/genética , Citocinas/metabolismo , RNA Mensageiro/metabolismo
18.
Zhongguo Zhong Yao Za Zhi ; 48(3): 689-699, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36872232

RESUMO

The peeled stems of Syringa pinnatifolia(SP) is a representative Mongolian folk medicine with the effects of anti-depression, heat clearance, pain relief, and respiration improvement. It has been clinically used for the treatment of coronary heart disease, insomnia, asthma, and other cardiopulmonary diseases. As part of the systematic study on pharmacological substances of SP, 11 new sesquiterpenoids were isolated from the terpene-containing fractions of the ethanol extract of SP by liquid chromatography-mass spectrometry(LC-MS) and proton nuclear magnetic resonance(~1H-NMR) guided isolation methods. The planar structures of the sesquiterpenoids were identified by MS, 1D NMR, and 2D NMR data analysis, and were named pinnatanoids C and D(1 and 2), and alashanoids T-ZI(3-11), respectively. The structure types of the sesquiterpenoids included pinnatane, humulane, seco-humulane, guaiane, carryophyllane, seco-erimolphane, isodaucane, and other types. However, limited to the low content of compounds, the existence of multiple chiral centers, the flexibility of the structure, or lack of ultraviolet absorption, the stereoscopic configuration remained unresolved. The discovery of various sesquiterpenoids enriches the understanding of the chemical composition of the genus and species and provides references for further analysis of pharmacological substances of SP.


Assuntos
Asma , Sesquiterpenos , Syringa , Terpenos , Cromatografia Líquida
19.
Anal Chem ; 94(7): 3180-3187, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35133791

RESUMO

Cellular target identification plays an essential role in innovative drug development and pharmacological mechanism elucidation. However, very few practical experimental methodologies have been developed for identifying target proteins for supercomplex molecular systems such as biologically active phytochemicals or pharmaceutical compositions. To overcome this limitation, we synthesized gold nanoparticles (AuNPs) as solid scaffolds, which were bound with 4,4'-dihydroxybenzophenone (DHBP) as a photo-cross-linking group on the surface. Then, DHBP-modified AuNPs cross-linked various organic compounds from phytochemicals under ultraviolet radiation via carbene reactions, H-C bond insertion, for catalytic C-C bond formation. We next used the phytochemical-cross-linked AuNPs (phytoAuNPs) to pull down potential binding proteins from brain tissue lysate and identified 13 neuroprotective targets by mass spectrometry analysis. As an exemplary study, we selected Hsp60 as a crucial cellular target to further screen 14 target-binding compounds from phytochemicals through surface plasmon resonance (SPR) analysis, followed by Hsp60 activity detection and neuroprotective effect assay in cells. Collectively, this gold nanoparticle-based photo-cross-linking strategy can serve as a useful platform for discovering novel cellular targets for supercomplex molecular systems and help to explore pharmacological mechanisms and active substances.


Assuntos
Ouro , Nanopartículas Metálicas , Catálise , Ouro/química , Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície/métodos , Raios Ultravioleta
20.
Anal Chem ; 94(44): 15395-15404, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36286389

RESUMO

The bile acid (BA) submetabolome can partially reflect either physiological or pathological status of vertebrates. The structural diversity, however, extensively hinders BA submetabolome clarification. Here, efforts were primarily devoted to enhance structural annotation confidences of BAs, in particular the conjugated BAs, through fortifying a new technology, namely, squared energy-resolved mass spectrometry (ER2-MS), to traditional liquid chromatography with tandem mass spectrometry (LC-MS/MS). Because of possessing two tandem-in-space collision cells, namely, q2 and linear ion trap (LIT) chambers, Qtrap-MS was employed as the fit-for-purpose tool to conduct ER2-MS measurements. The first ER-MS was undertaken in a q2 cell to gain first-generation breakdown graphs to disclose conjugation sites via applying the multiple-reaction monitoring (MRM) program, and the second ER-MS was accomplished in a LIT chamber through programming MRM cubed to acquire second-generation breakdown graphs of concerned ions for scaffold characterization. An authentic BA library consisting of commercial BAs together with their in vitro metabolites was built to record a reference breakdown graph set. Moreover, the so-called universal metabolome standard sample that was prepared by pooling diverse BA-enriched matrices was applied for structural deciphering potential evaluation and quasi-quantitative analysis of all detected BAs as well, according to applying a well-defined quasi-content concept. High-confidence structural analysis was achieved for as many as 201 BAs, and significant impacts occurred for the BA submetabolome of HepG2 cells after lithocholic acid treatment. Together, ER2-MS provides a promising tool to promote, although not limited to, LC-MS/MS-based BA-targeted metabolomics.


Assuntos
Ácidos e Sais Biliares , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Metabolômica/métodos , Metaboloma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA