Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
J Clin Periodontol ; 49(5): 506-517, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35066916

RESUMO

AIM: To evaluate whether Porphyromonas gingivalis (P. gingivalis) inoculation could induce cardiac remodelling in rats. MATERIALS AND METHODS: The study was conducted on 33 Wistar rats, which were distributed in the following experimental groups: not inoculated; inoculated with 1 × 108 CFU/ml of bacteria; inoculated with 3 × 108 CFU/ml of bacteria. The animals were inoculated at baseline and on the 15th day of follow-up. Blood collection was performed at baseline and 60 min after each inoculation. At 29 days, the animals were subjected to echocardiography and at 30 days to haemodynamic studies before sacrificing them. RESULTS: Impact of the bacteria was more evident in rats that received higher P. gingivalis concentration. Thus, 3 × 108 CFU/ml of bacteria increased the rectal temperature and water content in the lung as well as myocardial necrosis and fibrosis. P. gingivalis induced the intensification of DNA fragmentation and increased the levels of malondialdehyde, oxidized proteins, and macrophage expression in the myocardium. These findings were associated with lower LV isovolumetric relaxation time, +dP/dt, -dP/dt, and higher end-diastolic pressure. CONCLUSIONS: P. gingivalis bacteraemia is significantly associated with adverse cardiac remodelling and may play a biological role in the genesis of heart failure.


Assuntos
Infarto do Miocárdio , Miocardite , Animais , Porphyromonas gingivalis , Ratos , Ratos Wistar , Remodelação Ventricular
2.
Lasers Surg Med ; 54(6): 883-894, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35366381

RESUMO

INTRODUCTION: Ischemic heart disease is the leading cause of death worldwide, and interventions to reduce myocardial infarction (MI) complications are widely researched. Photobiomodulation therapy (PBMT) has altered multiple biological processes in tissues and organs, including the heart. OBJECTIVES: This study aimed to assess the temporal effects of PBMT on cardiac fibrosis activation after MI in rats. In this proof-of-concept study, we monitored the change in expression patterns over time of genes and microRNAs (miRNAs) involved in the formation of cardiac fibrosis post-MI submitted to PBMT. MATERIALS AND METHODS: Experimental MI was induced, and PBMT was applied shortly after coronary artery ligation (laser light of wavelength 660 nm, 15 mW of power, energy density 22.5 J/cm2 , 60 seconds of application, irradiated area 0.785 cm2 , fluence 1.1 J/cm2 ). Ventricular septal samples were collected at 30 minutes, 3, 6, 24 hours, and 3 days post-MI to determine temporal PBMT's effects on messenger RNA (mRNA) expression associated with cardiac fibrosis activation and miRNAs expression. RESULTS: PBMT, when applied after ischemia, reversed the changes in mRNA expression of myocardial extracellular matrix genes induced by MI. Surprisingly, PBMT modified cardiac miRNAs expression related to fibrosis replacement in the myocardium. Expression correlations between myocardial mRNAs were assessed. The correlation coefficient between miRNAs and target mRNAs was also determined. A positive correlation was detected among miR-21 and transforming growth factor beta-1 mRNA. The miR-29a expression negatively correlated to Col1a1, Col3a1, and MMP-2 mRNA expressions. In addition, we observed that miR-133 and Col1a1 mRNA were negatively correlated. CONCLUSION: The results suggest that PBMT, through the modulation of gene transcription and miRNA expressions, can interfere in cardiac fibrosis activation after MI, mainly reversing the signaling pathway of profibrotic genes.


Assuntos
Terapia com Luz de Baixa Intensidade , MicroRNAs , Infarto do Miocárdio , Animais , Fibrose , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/radioterapia , RNA Mensageiro/genética , Ratos
3.
J Am Soc Nephrol ; 32(7): 1616-1629, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33846238

RESUMO

BACKGROUND: SGLT2 inhibitors reduce the risk of heart failure (HF) mortality and morbidity, regardless of the presence or absence of diabetes, but the mechanisms underlying this benefit remain unclear. Experiments with nondiabetic HF rats tested the hypothesis that the SGLT2 inhibitor empagliflozin (EMPA) inhibits proximal tubule (PT) NHE3 activity and improves renal salt and water handling. METHODS: Male Wistar rats were subjected to myocardial infarction or sham operation. After 4 weeks, rats that developed HF and sham rats were treated with EMPA or untreated for an additional 4 weeks. Immunoblotting and quantitative RT-PCR evaluated SGLT2 and NHE3 expression. Stationary in vivo microperfusion measured PT NHE3 activity. RESULTS: EMPA-treated HF rats displayed lower serum B-type natriuretic peptide levels and lower right ventricle and lung weight to tibia length than untreated HF rats. Upon saline challenge, the diuretic and natriuretic responses of EMPA-treated HF rats were similar to those of sham rats and were higher than those of untreated HF rats. Additionally, EMPA treatment prevented GFR decline and renal atrophy in HF rats. PT NHE3 activity was higher in HF rats than in sham rats, whereas treatment with EMPA markedly reduced NHE3 activity. Unexpectedly, SGLT2 protein and mRNA abundance were upregulated in the PT of HF rats. CONCLUSIONS: Prevention of HF progression by EMPA is associated with reduced PT NHE3 activity, restoration of euvolemia, and preservation of renal mass. Moreover, dysregulation of PT SGLT2 may be involved in the pathophysiology of nondiabetic HF.

4.
Photochem Photobiol Sci ; 20(4): 585-595, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33864617

RESUMO

This study evaluated the effect of photobiomodulation therapy (PBMt) before or after a high-intensity resistance exercise (RE) session on muscle oxidative stress. Female Wistar rats were assigned to one of the following groups: Sham (non-exercised, undergoing placebo-PBMt); NLRE (exercised, undergoing placebo-PBMt); PBMt + RE (pre-exercise PBMt); RE + PBMt (post-exercise PBMt). The RE comprised four climbs bearing the maximum load with a 2 min rest between each climb. An 830-nm aluminum gallium arsenide diode laser (100 mW; 0.028 cm2; 3.57 mW/cm2; 142.8 J/cm2; 4 J; Photon Laser III, DMC, São Paulo, Brazil) was applied 60 s before or after RE in gastrocnemius muscles. Analyses were performed at 24 h after RE: lipoperoxidation using malondialdehyde (MDA) and protein oxidation (OP) on Western blot. Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activity were spectrophotometrically assessed. Nitric oxide (NO) level was determined by the Griess reaction. The MDA and OP levels were significantly higher in the NLRE group. Increased OP was prevented in all PBMt groups; however, increased MDA was prevented only in the RE + PBMT group. The RE + PBMt group had higher SOD activity compared to all other groups. A higher GPx activity was observed only in the PBMT + RE compared to Sham group, and CAT activity was reduced by RE, without PBMt effect. NO levels were unchanged with RE or PBMt. Therefore, PBMt application after a RE section has a more potent antioxidant effect than previous PBMt. Rats submitted to post-RE PBMt illustrated prevention of increased lipoperoxidation and protein oxidation as well as increased SOD activity. The photobiomodulation can attenuate oxidative stress induced by resistance exercise. A more evident benefit shows to be obtained with the application after exercise, in which it has increased the activity of superoxide dismustase.


Assuntos
Terapia com Luz de Baixa Intensidade , Músculo Esquelético , Estresse Oxidativo , Treinamento Resistido , Animais , Antioxidantes , Feminino , Peroxidação de Lipídeos , Malondialdeído , Oxirredução , Condicionamento Físico Animal , Ratos , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico
5.
Lasers Surg Med ; 53(9): 1247-1257, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33846991

RESUMO

BACKGROUND AND OBJECTIVES: Induction of myocardial infarction (MI) in rats by occlusion of the left anterior descending coronary artery is an experimental model used in research to elucidate functional, structural, and molecular modifications associated with ischemic heart disease. Photobiomodulation therapy (PBMT) has become a therapeutic alternative by modulating various biological processes eliciting several effects, including anti-inflammatory and pro-proliferative actions. The main objective of this work was to evaluate the effect of PBMT in the modulation of transcriptional and post-transcriptional changes that occurred in myocardium signal transduction pathways after MI. STUDY DESIGN/MATERIALS AND METHODS: Continuous wave (CW) non-thermal laser parameters were: 660 nm wavelength, power 15 mW, with a total energy of 0.9 J, fluence of 1.15 J/cm2 , spot size of 0.785 cm2 , and time of 60 seconds. Using in silico analysis, we selected and then, quantified the expression of messenger RNA (mRNA) of 47 genes of 9 signaling pathways associated with MI (angiogenesis, cell survival, hypertrophy, oxidative stress, apoptosis, extracellular matrix, calcium kinetics, cell metabolism, and inflammation). Messenger RNA expression quantification was performed in myocardial samples by polymerase chain reaction real-time array using TaqMan customized plates. RESULTS: Our results evidenced that MI modified mRNA expression of several well-known biomarkers related to detrimental cardiac activity in almost all signaling pathways analyzed. However, PBMT reverted most of these transcriptional changes. More expressively, PBMT provoked a robust decrease in mRNA expression of molecules that participate in post-MI inflammation and ECM composition, such as IL-6, TNF receptor, TGFb1, and collagen I and III. Global microRNA (miRNA) expression analysis revealed that PBMT decreased miR-221, miR-34c, and miR-93 expressions post-MI, which are related to deleterious effects in cardiac remodeling. CONCLUSION: Thus, the identification of transcriptional and post-transcriptional changes induced by PBMT may be used to interfere in the molecular dynamics of cardiac remodeling post-MI.


Assuntos
Terapia com Luz de Baixa Intensidade , MicroRNAs , Infarto do Miocárdio , Animais , Apoptose , Modelos Animais de Doenças , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Miocárdio , Ratos , Remodelação Ventricular
6.
Clin Sci (Lond) ; 134(9): 1081-1094, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32352510

RESUMO

The relationship between disturbances in glucose homeostasis and heart failure (HF) progression is bidirectional. However, the mechanisms by which HF intrinsically impairs glucose homeostasis remain unknown. The present study tested the hypothesis that the bioavailability of intact glucagon-like peptide-1 (GLP-1) is affected in HF, possibly contributing to disturbed glucose homeostasis. Serum concentrations of total and intact GLP-1 and insulin were measured after an overnight fast and 15 min after the ingestion of a mixed breakfast meal in 49 non-diabetic patients with severe HF and 40 healthy control subjects. Similarly, fasting and postprandial serum concentrations of these hormones were determined in sham-operated rats, and rats with HF treated with an inhibitor of the GLP-1-degrading enzyme dipeptidyl peptidase-4 (DPP4), vildagliptin, or vehicle for 4 weeks. We found that HF patients displayed a much lower increase in postprandial intact and total GLP-1 levels than controls. The increase in postprandial intact GLP-1 in HF patients correlated negatively with serum brain natriuretic peptide levels and DPP4 activity and positively with the glomerular filtration rate. Likewise, the postprandial increases in both intact and total GLP-1 were blunted in HF rats and were restored by DPP4 inhibition. Additionally, vehicle-treated HF rats displayed glucose intolerance and hyperinsulinemia, whereas normal glucose homeostasis was observed in vildagliptin-treated HF rats. We conclude that the postprandial increase in GLP-1 is blunted in non-diabetic HF. Impaired GLP-1 bioavailability after meal intake correlates with poor prognostic factors and may contribute to the establishment of a vicious cycle between glucose disturbance and HF development and progression.


Assuntos
Glicemia/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Insuficiência Cardíaca/etiologia , Período Pós-Prandial/fisiologia , Idoso , Animais , Peptídeo C/sangue , Feminino , Intolerância à Glucose/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Insulina/sangue , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/fisiopatologia , Fragmentos de Peptídeos/sangue , Ratos Wistar
7.
Lasers Med Sci ; 35(8): 1689-1694, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31925594

RESUMO

High-intensity resistance exercise (RE) increases oxidative stress leading to deleterious effects on muscle performance and recovery. The aim of this study was to assess the effect of applying low-level laser therapy (LLLT) prior to a RE session on muscle oxidative stress and to determine the possible influence of the dosimetric parameters. Female Wistar rats were assigned to non-LLLT (Ctr: non-exercised control; RNI: RE) or LLLT groups subjected to RE (radiant energy: 4 J, 8 J, and 12 J, respectively). RE consisted of four maximum load climbs. An 830-nm DMC Lase Photon III was used to irradiate three points in gastrocnemius muscles (two limbs) before exercise. Animals were euthanized after 60 min after the end of the exercise, and muscle tissue was removed for analysis of oxidative stress markers. All doses resulted in the prevention of increased lipoperoxidation; however, LLLT prevented protein oxidation only in rats that were pretreated with 8 J and 12 J of energy by LLLT. RE and LLLT did not change catalase activity. However, RE resulted in lower superoxide dismutase activity, and the opposite was observed in the LLLT group. These data indicate that LLLT prior to RE can prevent muscle oxidative stress. This study is the first to evaluate the impact of dosimetric LLLT parameters on the oxidative stress induced by RE, wherein both 8 J and 12 J of energy afforded significant protection.


Assuntos
Terapia com Luz de Baixa Intensidade , Músculo Esquelético/patologia , Estresse Oxidativo , Condicionamento Físico Animal , Treinamento Resistido , Animais , Catalase/metabolismo , Feminino , Peroxidação de Lipídeos , Músculo Esquelético/enzimologia , Oxirredução , Ratos Wistar , Superóxido Dismutase/metabolismo
8.
Heart Lung Circ ; 28(2): 263-271, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29503239

RESUMO

BACKGROUND: Preconditioning of cell recipients may exert a significant role in attenuating the hostility of the infarction milieu, thereby enhancing the efficacy of cell therapy. This study was conducted to examine whether exercise training potentiates the cardioprotective effects of adipose-derived stem cell (ADSC) transplantation following myocardial infarction (MI) in rats. METHODS: Four groups of female Fisher-344 rats were studied: Sham; non-trained rats with MI (sMI); non-trained rats with MI submitted to ADSCs transplantation (sADSC); trained rats with MI submitted to ADSCs (tADSC). Rats were trained 9 weeks prior to MI and ADSCs transplantation. Echocardiography was applied to assess cardiac function. Myocardial performance was evaluated in vitro. Protein expression analyses were carried out by immunoblotting. Periodic acid-Schiff staining was used to analyse capillary density and apoptosis was evaluated with terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay. RESULTS: Echocardiography performed 4 weeks after the infarction revealed attenuated scar size in the both sADSC and tADSC groups compared to the sMI group. However, fractional shortening was improved only in the tADSC group. In vitro myocardial performance was similar between the tADSC and Sham groups. The expression of phosphoSer473Akt1 and VEGF were found to be higher in the hearts of the tADSC group compared to both the sADSC and sMI groups. Histologic analysis demonstrated that tADSC rats had higher capillary density in the remote and border zones of the infarcted sites compared to the sMI rats. CONCLUSIONS: Preconditioning with exercise induces a pro-angiogenic milieu that may potentiate the therapeutic effects of ADSCs on cardiac remodelling following MI.


Assuntos
Infarto do Miocárdio , Condicionamento Físico Animal , Transplante de Células-Tronco , Remodelação Ventricular , Animais , Feminino , Modelos Animais de Doenças , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Condicionamento Físico Animal/métodos , Distribuição Aleatória , Ratos Endogâmicos F344 , Transplante de Células-Tronco/métodos , Remodelação Ventricular/fisiologia , Ratos
9.
Lasers Med Sci ; 33(8): 1781-1790, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29808322

RESUMO

This study aimed to determine whether photobiomodulation therapy (PBMT) in diabetic rats subjected to high-intensity exercise interferes with the expression of the oxidative stress marker in the gastrocnemius muscle. Twenty-four male Wistar rats were included in this study comprising 16 diabetic and eight control rats. The animals were allocated into three groups-control, diabetic fatigue, and diabetic PBMT fatigue groups. Diabetes was induced via the intraperitoneal administration of streptozotocin (50 mg/kg). We subsequently assessed blood lactate levels and PBMT. The animals of the diabetic fatigue group PBMT were irradiated before the beginning of the exercises, with dose of 4 J and 808 nm, were submitted to treadmill running with speed and gradual slope until exhaustion, as observed by the maximum volume of oxygen and lactate level. The animals were euthanized and muscle tissue was removed for analysis of SOD markers, including catalase (CAT), glutathione peroxidase (GPx), and 2-thiobarbituric acid (TBARS) reactive substances. CAT, SOD, and GPx activities were significantly higher in the diabetic PBMT fatigue group (p < 0.05) than in the diabetic fatigue group. Outcomes for the diabetic PBMT fatigue group were similar to those of the control group (p > 0.05), while their antioxidant enzymes were significantly higher than those of the diabetic fatigue group. PBMT mitigated the TBARS concentration (p > 0.05). PBMT may reduce oxidative stress and be an alternative method of maintaining physical fitness when subjects are unable to perform exercise. However, this finding requires further testing in clinical studies.


Assuntos
Biomarcadores/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/radioterapia , Terapia com Luz de Baixa Intensidade/métodos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Estresse Oxidativo , Condicionamento Físico Animal , Animais , Catalase/metabolismo , Diabetes Mellitus Experimental/sangue , Glutationa Peroxidase/metabolismo , Ácido Láctico/sangue , Masculino , Oxirredução , Ratos Wistar , Corrida , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
10.
Int J Sports Med ; 39(14): 1049-1054, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30399646

RESUMO

This study compared maximum oxygen consumption (VO2max) on a 20-meter multistage shuttle run test (20-Srt) with a cardiopulmonary exercise test (CPET) to determine a VO2max prediction equation for a 20-Srt in children aged 6-10 years. Eighty healthy children performed the CPET on a treadmill, while the 20-Srt took place on a sports court. Heart rate (HR) was measured and the expired gases were continuously measured breath-by-breath using a portable gas analyzer. The VO2max was lower (p<0.05) in CPET than 20-Srt for all, female, and male participants, respectively (46.3±7.9 vs. 48.7±4.6; 42.7±7.8 vs. 46.7±4.8; 49.3±6.8 vs. 50.4±3.9, mL·kg-1·min-1). The standard error estimates were between 3.0 and 3.6 and considered as not clinically relevant if less than 5 mL·kg-1·min-1. The intraclass correlation coefficient between the VO2 in CPET and in 20-Srt was 0.74 (CI95% 0.55-0.84) and considered moderately reliable. The linear multiple regression excluded sex, body mass index and fat-free mass and retained the maximum speed and age in the predictive equation. The 20-Srt estimates the VO2max with moderate reliability and the predictive equation was VO2maxpred=4.302+(maximum speed*5.613)-(age*1.523) for children aged 6-10 years.


Assuntos
Teste de Esforço , Consumo de Oxigênio , Corrida/fisiologia , Criança , Feminino , Frequência Cardíaca , Humanos , Modelos Lineares , Masculino , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
11.
J Sports Sci ; 36(20): 2349-2357, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29578836

RESUMO

We investigated whether low-level laser therapy (LLLT) prior to or post resistance exercise could attenuate muscle damage and inflammation. Female Wistar rats were assigned to non-LLLT or LLLT groups. An 830-nm DMC Laser Photon III was used to irradiate their hind legs with 2J, 4J, and 8J doses. Irradiations were performed prior to or post (4J) resistance exercise bouts. Resistance exercise consisted of four maximum load climbs. The load work during a resistance exercise bout was similar between Control (non-LLLT, 225 ± 10 g), 2J (215 ± 8 g), 4J (210 ± 9 g), and 8J (226 ± 9 g) groups. Prior LLLT did not induce climbing performance improvement, but exposure to 4J irradiation resulted in lower blood lactate levels post-exercise. The 4J dose decreased creatine kinase and lactic dehydrogenase levels post-exercise regardless of the time of application. Moreover, 4-J irradiation exposure significantly attenuated tumor necrosis factor alpha, interleukin-6, interleukin-1ß, cytokine-induced neutrophil chemoattractant-1, and monocyte chemoattractant protein-1. There was minor macrophage muscle infiltration in 4J-exposed rats. These data indicate that LLLT prior to or post resistance exercise can reduce muscle damage and inflammation, resulting in muscle recovery improvement. We attempted to determine an ideal LLLT dose for suitable results, wherein 4J irradiation exposure showed a significant protective role.


Assuntos
Terapia com Luz de Baixa Intensidade , Músculo Esquelético/lesões , Músculo Esquelético/efeitos da radiação , Condicionamento Físico Animal/efeitos adversos , Treinamento Resistido/efeitos adversos , Animais , Biomarcadores/sangue , Creatina Quinase/sangue , Citocinas/sangue , Feminino , Inflamação/prevenção & controle , L-Lactato Desidrogenase/sangue , Ácido Láctico/sangue , Ativação de Macrófagos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Condicionamento Físico Animal/métodos , Ratos Wistar
12.
Mol Cell Biochem ; 424(1-2): 87-98, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27761848

RESUMO

Dexamethasone is a potent and widely used anti-inflammatory and immunosuppressive drug. However, recent evidences suggest that dexamethasone cause pathologic cardiac remodeling, which later impairs cardiac function. The mechanism behind the cardiotoxic effect of dexamethasone is elusive. The present study aimed to verify if dexamethasone-induced cardiotoxicity would be associated with changes in the cardiac net balance of calcium handling protein and calcineurin signaling pathway activation. Wistar rats (~400 g) were treated with dexamethasone (35 µg/g) in drinking water for 15 days. After dexamethasone treatment, we analyzed cardiac function, cardiomyocyte diameter, cardiac fibrosis, and the expression of proteins involved in calcium handling and calcineurin signaling pathway. Dexamethasone-treated rats showed several cardiovascular abnormalities, including elevated blood pressure, diastolic dysfunction, cardiac fibrosis, and cardiomyocyte apoptosis. Regarding the expression of proteins involved in calcium handling, dexamethasone increased phosphorylation of phospholamban at threonine 17, reduced protein levels of Na+/Ca2+ exchanger, and had no effect on protein expression of Serca2a. Protein levels of NFAT and GATA-4 were increased in both cytoplasmic and nuclear faction. In addition, dexamethasone increased nuclear protein levels of calcineurin. Altogether our findings suggest that dexamethasone causes pathologic cardiac remodeling and diastolic dysfunction, which is associated with impaired calcium handling and calcineurin signaling pathway activation.


Assuntos
Calcineurina/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Cardiomegalia/metabolismo , Dexametasona/efeitos adversos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/patologia , Dexametasona/farmacologia , Masculino , Miocárdio/patologia , Miócitos Cardíacos/patologia , Ratos , Ratos Wistar
13.
Am J Physiol Heart Circ Physiol ; 310(11): H1760-72, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27199127

RESUMO

Circulating dipeptidyl peptidase IV (DPPIV) activity correlates with cardiac dysfunction in humans and experimental heart failure (HF) models. Similarly, inflammatory markers are associated with poorer outcomes in HF patients. However, the contributions of DPPIV to inflammation in HF remain elusive. Therefore, this study aimed to investigate whether the cardioprotective effects of DPPIV inhibition after myocardial injury are accompanied by reduced cardiac inflammation, whether circulating DPPIV activity correlates with the levels of systemic inflammatory markers in HF patients, and whether leukocytes and/or splenocytes may be one of the sources of circulating DPPIV in HF. Experimental HF was induced in male Wistar rats by left ventricular myocardial injury after radiofrequency catheter ablation. The rats were divided into three groups: sham, HF, and HF + DPPIV inhibitor (sitagliptin). Six weeks after surgery, cardiac function, perfusion and inflammatory status were evaluated. Sitagliptin treatment improved cardiac function and perfusion, reduced macrophage infiltration, and diminished the levels of inflammatory biomarkers including TNF-α, IL-1ß, and CCL2. In HF patients, serum DPPIV activity correlated with CCL2, suggesting that leukocytes may be the source of circulating DPPIV in HF. Unexpectedly, DPPIV release was higher in splenocytes from HF rats and similar in HF circulating mononuclear cells compared with those from sham, suggesting an organ-specific modulation of DPPIV in HF. Collectively, our data provide new evidence that the cardioprotective effects of DPPIV inhibition in HF may be due to suppression of inflammatory cytokines. Moreover, they suggest that a vicious circle between DPPIV and inflammation may contribute to HF development and progression.


Assuntos
Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Coração/efeitos dos fármacos , Inflamação/tratamento farmacológico , Fosfato de Sitagliptina/uso terapêutico , Animais , Biomarcadores/sangue , Quimiocina CCL2/sangue , Inibidores da Dipeptidil Peptidase IV/farmacologia , Coração/fisiopatologia , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/fisiopatologia , Inflamação/sangue , Inflamação/fisiopatologia , Interleucina-1beta/sangue , Macrófagos/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Fosfato de Sitagliptina/farmacologia , Fator de Necrose Tumoral alfa/sangue
14.
Nicotine Tob Res ; 18(12): 2268-2272, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27613920

RESUMO

INTRODUCTION: There was no data for cardiac repercussion of exercise training associated with tobacco smoking. This issue is interesting because some smoking people can be enrolled in an exercise-training program. Thus, we evaluated swimming training effects on the function and structural myocardial in rats exposed to tobacco smoking. METHODS: Male Wistar rats were assigned to one of four groups: C, untrained rats without exposure to tobacco smoking; E, exercised rats without exposure to tobacco smoking; CS, untrained rats exposed to tobacco smoking; ECS, exercised rats exposed to tobacco smoking. Rats swam five times a week twice daily (60min per session) for 8 weeks. Before each bout exercise, rats breathed smoke from 20 cigarettes for 60min. Twenty-four hours after the last day of the protocol, papillary muscles were isolated for in vitro analysis of myocardial mechanics. The myocardial mass and nuclear cardiomyocyte volume were used as hypertrophy markers, and collagen content was determined by picrosirius red staining. RESULTS: There was a well-pronounced myocardial hypertrophic effect for two interventions. The exercise blunted myocardial collagen increases induced by tobacco smoking. However, exercise and tobacco-smoking association was deleterious to myocardial performance. Thereby, in vitro experiments with papillary muscles contracting in isometric showed impairment myocardial inotropism in exercised rats exposed to tobacco smoking. CONCLUSIONS: This work presents novel findings on the role of exercise training on cardiac remodeling induced by tobacco smoking. Although exercise has mitigated tissue fibrosis, their association with tobacco smoking exacerbated hypertrophy and in vitro myocardial dysfunction. IMPLICATIONS: This is first study to show that the association of an aerobic exercise training with tobacco smoking intensifies the phenotype of pathological cardiac hypertrophy. Therefore, the combination of interventions resulted in exacerbated myocardial hypertrophy and contractility dysfunction. These findings have significant clinical implication because some smoking people can be enrolled in an exercise-training program.


Assuntos
Coração/fisiopatologia , Miocárdio/patologia , Condicionamento Físico Animal , Fumar , Animais , Modelos Animais de Doenças , Coração/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Fumaça , Nicotiana/efeitos adversos
15.
Can J Physiol Pharmacol ; 94(6): 643-50, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27082032

RESUMO

The effects of chronic treatment with digitoxin on arterial baroreceptor sensitivity for heart rate (HR) and renal sympathetic nerve activity (rSNA) control, cardiopulmonary reflex, and autonomic HR control in an animal model of heart failure (HF) were evaluated. Wistar rats were treated with digitoxin, which was administered in their daily feed (1 mg/kg per day) for 60 days. The following 3 experimental groups were evaluated: sham, HF, and HF treated with digitoxin (HF + DIG). We observed an increase in rSNA in the HF group (190 ± 29 pps, n = 5) compared with the sham group (98 ± 14 pps, n = 5). Digitoxin treatment prevented an increase in rSNA (98 ± 14 pps, n = 7). Therefore, arterial baroreceptor sensitivity was decreased in the HF group (-1.24 ± 0.07 bpm/mm Hg, n = 8) compared with the sham group (-2.27 ± 0.23 bpm/mm Hg, n = 6). Digitoxin did not alter arterial baroreceptor sensitivity in the HF + DIG group. Finally, the HF group showed an increased low frequency band (LFb: 23 ± 5 ms(2), n = 8) and a decreased high frequency band (HFb: 77 ± 5 ms(2), n = 8) compared with the sham group (LFb: 14 ± 3 ms(2); HFb: 86 ± 3 ms(2), n = 9); the HF+DIG group exhibited normalized parameters (LFb: 15 ± 3 ms(2); HFb: 85 ± 3 ms(2), n = 9). In conclusion, the benefits of decreasing rSNA are not directly related to improvements in peripheral cardiovascular reflexes; such occurrences are due in part to changes in the central nuclei of the brain responsible for autonomic cardiovascular control.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Cardiotônicos/uso terapêutico , Digitoxina/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Frequência Cardíaca/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Animais , Sistema Nervoso Autônomo/efeitos dos fármacos , Sistema Nervoso Autônomo/fisiologia , Pressão Sanguínea/fisiologia , Cardiotônicos/farmacologia , Digitoxina/farmacologia , Ecocardiografia Doppler , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/fisiopatologia , Frequência Cardíaca/fisiologia , Hemodinâmica/fisiologia , Masculino , Ratos , Ratos Wistar
16.
Lasers Med Sci ; 31(5): 833-40, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26861983

RESUMO

The aim of the present study was to determine whether low-level laser therapy (LLLT) in conjunction with aerobic training interferes with oxidative stress, thereby influencing the performance of old rats participating in swimming. Thirty Wistar rats (Norvegicus albinus) (24 aged and six young) were tested. The older animals were randomly divided into aged-control, aged-exercise, aged-LLLT, aged-LLLT/exercise, and young-control. Aerobic capacity (VO2max(0.75)) was analyzed before and after the training period. The exercise groups were trained for 6 weeks, and the LLLT was applied at 808 nm and 4 J energy. The rats were euthanized, and muscle tissue was collected to analyze the index of lipid peroxidation thiobarbituric acid reactive substances (TBARS), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities. VO2 (0.75)max values in the aged-LLLT/exercise group were significantly higher from those in the baseline older group (p <0.01) and the LLLT and exercise group (p <0.05). The results indicate that the activities of CAT, SOD, and GPx were higher and statistically significant (p <0.05) in the LLLT/exercise group than those in the LLLT and exercise groups. Young animals presented lesser and statistically significant activities of antioxidant enzymes compared to the aged group. The LLLT/exercise group and the LLLT and exercise group could also mitigate the concentration of TBARS (p > 0.05). Laser therapy in conjunction with aerobic training may reduce oxidative stress, as well as increase VO2 (0.75)max, indicating that an aerobic exercise such as swimming increases speed and improves performance in aged animals treated with LLLT.


Assuntos
Envelhecimento/efeitos da radiação , Terapia com Luz de Baixa Intensidade/métodos , Estresse Oxidativo/efeitos da radiação , Condicionamento Físico Animal/fisiologia , Natação/fisiologia , Animais , Antioxidantes/metabolismo , Peroxidação de Lipídeos , Músculo Esquelético/metabolismo , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
17.
Mol Cell Biochem ; 402(1-2): 193-202, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25626892

RESUMO

The activity of the ubiquitin proteasome system (UPS) and the level of oxidative stress contribute to the transition from compensated cardiac hypertrophy to heart failure in hypertension. Moreover, aerobic exercise training (AET) is an important therapy for the treatment of hypertension, but its effects on the UPS are not completely known. The aim of this study was to evaluate the effect of AET on UPS's activity and oxidative stress level in heart of spontaneously hypertensive rats (SHR). A total of 53 Wistar and SHR rats were randomly divided into sedentary and trained groups. The AET protocol was 5×/week in treadmill for 13 weeks. Exercise tolerance test, non-invasive blood pressure measurement, echocardiographic analyses, and left ventricle hemodynamics were performed during experimental period. The expression of ubiquitinated proteins, 4-hydroxynonenal (4-HNE), Akt, phospho-Akt(ser473), GSK3ß, and phospho-GSK3ß(ser9) were analyzed by western blotting. The evaluation of lipid hydroperoxide concentration was performed using the xylenol orange method, and the proteasomal chymotrypsin-like activity was measured by fluorimetric assay. Sedentary hypertensive group presented cardiac hypertrophy, unaltered expression of total Akt, phospho-Akt, total GSK3ß and phospho-GSK3ß, UPS hyperactivity, increased lipid hydroperoxidation as well as elevated expression of 4-HNE but normal cardiac function. In contrast, AET significantly increased exercise tolerance, decreased resting systolic blood pressure and heart rate in hypertensive animals. In addition, the AET increased phospho-Akt expression, decreased phospho-GSK3ß, and did not alter the expression of total Akt, total GSK3ß, and ubiquitinated proteins, however, significantly attenuated 4-HNE levels, lipid hydroperoxidation, and UPS's activity toward normotensive group levels. Our results provide evidence for the main effect of AET on attenuating cardiac ubiquitin proteasome hyperactivity and oxidative stress in SHR rats.


Assuntos
Hipertensão/terapia , Miocárdio/metabolismo , Estresse Oxidativo , Complexo de Endopeptidases do Proteassoma/fisiologia , Animais , Tamanho Celular , Terapia por Exercício , Hipertensão/metabolismo , Masculino , Miócitos Cardíacos/patologia , Condicionamento Físico Animal , Proteólise , Ratos Endogâmicos SHR , Ratos Wistar , Transdução de Sinais , Ubiquitina/metabolismo , Ubiquitinação , Resposta a Proteínas não Dobradas
19.
Lasers Med Sci ; 30(3): 1127-34, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25647393

RESUMO

The aim of the present study was to determine whether low-level laser therapy (LLLT), when used in conjunction with aerobic training, interferes with the expression of inflammatory markers IL-6 and TNF-α, thereby influencing the performance of old rats participating in swimming. A total of 30 Wistar rats (Rattus norvegicus albinus) were used for this study: 24 aged rats, and 6 young rats. The older animals were randomly divided into four groups designated as follows: aged-control, aged-exercise, aged-LLLT, aged-LLLT/exercise group, and young-control animals. Aerobic capacity (VO2max) was analyzed before and after training period. The aged-exercise and aged-LLLT/exercise groups were trained for 6 weeks. LLLT laser was applied before each training session with 808 nm and 4 J of energy to the indicated groups throughout training. The rats were euthanized, and muscle tissue and serum were collected for muscle cross-sectional area and IL-6 and TNF-α protein analysis. In VO2 showed statistical difference between young- and aged-control groups (used as baseline) (p < 0.05). The same difference can be observed in the young control group compared with all intervention groups (exercise, LLLT and LLLT + exercise). In comparison with the aged-control group, a difference was observed only for comparison with the exercise group (p < 0.05), and exercise associated with LLLT group (p < 0.001). Levels of IL-6 and TNF-α for the aged-exercise and the aged-LLLT/exercise groups were significantly decreased compared to the aged-control group (p < 0.05). Analysis of the transverse section of the gastrocnemius muscle showed a significant difference between the aged-exercise and aged-LLLT/exercise groups (p < 0.001). These results suggest that laser therapy in conjunction with aerobic training may provide a therapeutic approach for reducing the inflammatory markers (IL-6 and TNF-α), however, LLLT without exercise was not able to improve physical performance of aged rats.


Assuntos
Interleucina-6/metabolismo , Terapia com Luz de Baixa Intensidade , Fator de Necrose Tumoral alfa/metabolismo , Animais , Expressão Gênica/efeitos da radiação , Interleucina-6/genética , Masculino , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/metabolismo , Tamanho do Órgão , Condicionamento Físico Animal , Ratos , Ratos Wistar , Natação , Fator de Necrose Tumoral alfa/genética
20.
Lasers Med Sci ; 30(1): 217-23, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25192841

RESUMO

Low-level laser therapy (LLLT) has been shown to increase the proliferation of several cell types. We evaluated the effects of LLLT on adhesion, proliferation, and gene expression of vascular endothelial growth factor (VEGF) and type 2 receptor of VEGF (VEGFR2) at mesenchymal stem cells (MSCs) from human (hMSCs) and rat (rMSCs) adipose tissues on nutritional deficiencies. A dose-response curve was performed with cells treated with laser Ga-Al-As (660 nm, 30 mW) at energy of 0.7 to 9 J. Cell adhesion and proliferation were quantified 20, 40, and 60 min after LLLT and 24, 72, and 120 h after cultivation. Gene expression was verified by RT-PCR after 2 h of LLLT. A minor nutritional support caused a significant decrease in proliferation and adhesion of hMSCs and rMSCs. However, at the lowest LLLT dose (0.7 J), we observed a higher proliferation in hMSCs at standard condition shortly after irradiation (24 h). Adhesion was higher in hMSCs cultivated in controlled conditions at higher LLLT doses (3 and 9 J), and rMSCs show a reduction in the adhesion on 1.5 to 9 J. On nutritional deprivation, a 9 J dose was shown to reduce proliferation with 24 h and adhesion to all culture times in rMSCs. VEGF and VEGFR2 were increased after LLLT in both cell types. However, hMSCs under nutritional deprivation showed higher expression of VEGF and its receptor after irradiation with other laser doses. In conclusion, LLLT on human and rat MSCs might upregulate VEGF messenger RNA (mRNA) expression and modulate cell adhesion and proliferation distinctively.


Assuntos
Proliferação de Células/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Células-Tronco Mesenquimais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Adipócitos/citologia , Adipócitos/fisiologia , Animais , Adesão Celular/efeitos da radiação , Células Cultivadas , Meios de Cultura , Expressão Gênica/efeitos da radiação , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos da radiação , Ratos , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA